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Preface 

Ever since the ancient times, construction went along with growth and de
velopment of the human society: if not for other reasons, and in spite of the 
fact that the conception of the engineer as distinct from the architect or the 
master builder is relatively modern, civil engineering can be considered as 
old as civilization. In all ages, civil engineers were able to innovate and de
vise new ingenious schemes and techniques to cope with the new demands 
from the society: houses and water, for survival; roads, for mobility, a trait of 
freedom; public buildings, for life in associative form; and so on. In the 18th 
century, the term ingenieur was coined in France to denote a civil servant 
with a scientifically based training. This was a true turning point, from a con
ception of engineering - especially, civil - as a system of arts and techniques 
to one of engineering as the sagacious application of scientific principles. The 
successive, great evolution of civil engineering, as well as the accompanying 
impressive progress in developping new materials and structures, has always 
been strictly related to the posing, understanding and efficiently solving of a 
number of significant mathematical problems: more and more over the cen
turies, the central role of modelling and computation has been recognised. In 
this general framework, the contribution of Italian and French scientists has 
been crucial, structural elasticity being just a good example among many. 

This book collects some research results of French and Italian engineers, 
mechanicians and mathematicians, all associated within the Lagrange Lab
oratory. Various novel approaches to problems of current interest in civil 
engineering are demonstrated. The topics covered range from dynamic and 
seismic problems to the analysis of long-span structures and ancient build
ings; from studies on functionally-graded or composite materials to frictional 
or adhesive contact problems, including collisions; from granular materials to 
geotechnics. 

The Lagrange Laboratory has benefitted from the support of many indi
viduals and organizations. Special thanks are due to prof. Marie T. Janot
Giorgetti, scientific counsellor at the French Embassy in Italy, to prof. Lucio 
Bianco, president of CNR in Italy, and to prof. Catherine Brechignac, gen
eral director of CNRS in France. Finally, we wish to express our gratitude to 
Messrs. Salvatore Leonardi, Mario Bolognari and Giuseppe Biondo, majors 
of the cities of Messina, Taormina and Castelmola, in Sicily. 

Archimedes' island hosted the Lagrange Laboratory's meeting from which 
this book originated. We believe that the contents offer a good perspective 
of the scientific approach of the French and Italian schools to modern civil 
engineering. 

Rome, 
June 30, 2003 

Michel Fremond 
Franco Maceri 
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An introduction to Unilateral Dynamics 

Jean Jacques Moreau 

Laboratoire de Mecanique et Genie Civil, 
cc 048, Universite Montpellier II, 
F-34095 Montpellier Cedex 5, France 

Abstract. The paper is devoted to mechanical systems with a finite number of 
degrees of freedom. After showing how inequality requirements in evolution prob
lems can be handled through differential inclusions, one introduces dynamics by 
an elementary example of unilateral mechanical constraint. Then a general setting 
is constructed for multibody multicontact systems. The description of unilateral 
interaction at each possible contact point is formalized, with account of possible 
friction. This generates the numerical time-stepping policy called Contact Dynam
ics. The treatment of collisions or other frictional catastrophes in this framework 
leads to measure-differential inclusions, an essential tool in nonsmooth dynamics. 
The energy balance of nonsmooth evolutions is discussed. Two illustrations of the 
proposed numerical methods are presented. The former concerns the mechanisms 
of collapse of a bridge arch under local forcing. In the latter, the construction of a 
conical pile of grains is simulated, in order to investigate stresses in the bulk and 
the distribution of pressure on ground. 

1 Purpose 

1.1 Computation in multibody dynamics 

The numerical dynamics of collections of bodies treated as perfectly inde
formable, subject to the constraints of non-interpenetrability, with friction 
taken into account in the event of contact, currently is an active domain of 
research. Applications include the dynamics of machines, in particular robots, 
the dynamics of masonry works submitted to transient actions (earthquakes, 
gusts of wind or impacts), animated computer graphics and numerical sim
ulation in granular mechanics. In all these domains, assuming the perfect 
indeformability of each part of the system leads to efficient numerical proce
dures which, in many circumstances, satisfy the needs. Possibly, some vari
ables are added in order to also account for a certain deformability of these 
parts [2] [37], without essentially changing the computational strategies. Of 
course, for the handling of non-interpenetrability and friction, much may be 
learned from the rich literature devoted to the treatment of contact between 
deformable media discretized through finite elements, even if in most cases 
only quasistatic evolutions are addressed (see e.g. [3][12][18][20][35] or, con
cerning a dynamical situation [75]). 

The techniques used in multibody dynamics may be classified into the 
three following categories. 
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2 J. J. Moreau 

1.2 Event-driven methods 

The methods so qualified (abbr. ED) are practical mainly when the con
cerned time-interval equals the union of not too many subintervals, a priori 
unknown, over which the status of the various contacts remain unchanged, i.e. 
no collision which would create new contacts occurs, no contact either gets 
loose, nor any critical situation needing a change in the analytical expression 
of the Coulomb law of dry friction is met. On each of these subintervals, the 
same numerical techniques as in the investigation of machines with classical 
bilateral, possibly frictional, constraints may be used [28]. As integration pro
ceeds, there only is to watch the evolution of some indicators. In particular, 
the contact forces will be calculated. If, after a certain instant, some of the 
values computed for these forces are found to have directions incompatible 
with the unilaterality of the non-interpenetrability constraints (here we ne
glect adhesive, i.e. gluing effects), the programme decides that the motion has 
to be calculated otherwise. But one should keep in mind that the contacts 
which get loose after the critical instant are not necessarily those for which 
an unfeasible contact force has just been evaluated [22]. A popular approach 
to such discussions consists of reducing them to complementarity problems, 
similar to what is commonly met in constrained optimization. 

More embarrassing is the calculation of the new velocity in case the criti
cal instant is that of a collision. Contact forces take very large values during a 
very short time-interval and only poor phenomenological information is usu
ally available about such physical circumstances. Even in the simplest case, 
that of the collision of two otherwise free members of the system, the tradi
tional coefficient of restitution is known to depend not only on the materials 
these bodies are made of, but also on their shapes and relative orientations 
at the collision locus [72]; only the case of spherical beads appears relatively 
comfortable [25]. Furthermore, if some of the colliding bodies belong to clus
ters of already contacting ones, percussional reactions should be expected 
at all existing contact points. Though rigid body collisions currently are an 
active domain ofresearch [9][13][16][27][73], computation has to rely on prag
matic rules whose validity has to be checked in each domain of application. 

1.3 Smoothing methods 

'Nonsmoothness' is the salient feature of the problems in view. In fact, after 
the set of the possible positions of the investigated system has been para
metrized through an element q of R n, the geometric restriction that the 
non-interpenetrability constraints impose on q are expressed by a set of in
equalities. Hence, instead of running in a smooth submanifold as in tradi
tional analytical dynamics, the point q is confined in a region of R n whose 
boundary is made of a lot of pieces of hypersurfaces (millions or billions of 
them in current applications to granular materials): this is nonsmoothness in 
space. Furthermore, collisions are expected to induce velocity jumps: this is 
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nonsmoothness in time. To end, the contact forces or 'reactions' associated 
with the non-interpenetrability constraints are governed by highly irregular 
laws. These forces vanish as soon as the corresponding contacts break while, 
if contact holds, the commonly stipulated mechanical conditions do not ex
press them as functions of q. If, in addition, dry friction is taken into account 
(most usually in the form of Coulomb's law) it introduces some irregular re
lationships between contact forces and the sliding velocities. All this may be 
called nonsmoothness in law. 

In such a state of the affairs, a natural move is to replace, approximately, 
the nonsmooth governing relationships by some regularized ones. First the 
non-interpenetrability constraints will be replaced by some stiff repulsion laws 
which take effect as soon as two members of the system come close to each 
other. This automatically handles the possible collisions, as far as one con
siders them as 'elastic', while the dissipativity of collisions may be accounted 
for by adding some damping actions or also by using different repulsion laws 
in the episodes of approach and of separation. Similarly, frictional contact 
may be somewhat regularized through the introduction of local elastic mi
crodeformation and of viscosity-like effects. The dynamics of the approximate 
system is then governed by differential equations with sufficient regularity to 
be handled through standard numerical techniques. The drawback is that 
the need of precision requires the use of very stiff appproximate laws. Hence 
the time-stepping procedures applied have to resort to very small step-length 
and possibly also have to enforce numerical stability by introducing artificial 
damping or artificially increasing inertia. When treating dynamical applica
tions, the effect of such an artificial alteration of the mechanical data may 
blur the picture. Significant simulations of loose (collisional) flows of granular 
materials have been obtained in that way, but when dense collections of bod
ies are concerned (pieces of masonry or compact granulates) the method is 
mainly applied to quasi-static evolutions in which only a succession of equi
librium states is looked for. Dynamical computation is then used only as a 
way of attaining each of these equilibrium states, a strategy referred to as 
'Dynamic Relaxation'. 

The pioneering work of P. Cundall [19] was precisely based on the regu
larization strategy, today implemented in the majority of commercial pieces 
of software intended to handle non-interpenetrability. Because such computa
tion techniques are close to those applied in molecular simulations, they are 
commonly referred to as 'Molecular Dynamics' methods (abbr. MD), specially 
in the domain of granular mechanics [76]. 

1.4 Contact Dynamics 

This is the technique (abbr. CD) advocated by the author, to which the 
present paper is meant to provide an introduction. It originated from [52], 
where the (unilateral) contact, possibly frictional and/or collisional, between 
rigid bodies received a formulation in terms of elementary convex analysis 
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which proves suitable for computation. Mathematically, the resulting evolu
tion problems are governed in smooth cases by differential inclusions. General 
information on the latter concept may be found in [5] [21], but the need of 
treating also non-smooth evolutions calls for its extension to that of a mea
sure differential inclusion. The Sweeping Process introduced earlier by the 
author, with motivation in the quasi-static evolution of elastoplastic systems 
[48] [50] seems to have provided the first occurence of measure differential in
clusions in literature. This process and some related evolution problems are 
still today the objet of mathematical research; see references in [42]. In Sect.2 
of the present paper a description of the process, of purely kinematical na
ture, has been estimated able to make a tutorial introduction to the handling 
of unilaterality in mechanics. 

A directing idea of the Contact Dynamics approach is that the main ob
ject of computation is the velocity function t f--+ u E Rn. Time-stepping 
algorithms essentially have to determine the evolution of this function. by 
applying the principles of dynamics and the specified force laws. The po
sition function t f--+ q is only to be updated at each step through adequate 
integration. Possibly, some members of u are 'pseudo-parameters' such as the 
components of the spin vector of a solid, instead of the time-derivatives of po
sition parameters. From the geometrical standpoint, one should observe that, 
in analytical dynamics, the position q ranges in some differential manifold, 
while for each q the possible velocities are elements of the tangent space to 
the manifold at this point. The latter is a vector space relatively to which such 
concepts as linearity, convexity, etc. make sense, while no algebraic concept 
of this sort is generally available in the position manifold. 

Contact Dynamics procedures rest on drawing the balance of momentum 
of the investigated mechanical system over each time-step. No estimation 
of the acceleration is needed and the burden of calculating mathematically 
the curvatures of the involved surfaces is avoided. These curvatures are sim
ply accounted for by the fact that, from one step to the other, the normal 
directions to the detected contacts vary. 

The method results in time-stepping schemes which, at least in what 
concerns the velocity function, are of the implicit type. For this reason, a 
single computation step is needed in particular to decide whether equilibrium 
in a given position is a possible motion. 

In principle, the Contact Dynamics algorithms are ready at each step to 
treat collisions on the same footing as persistent contacts but, of course, the 
need of physical information about such phenomena is not overcome. 

1.5 Contents of the paper 

The contents of Sect. 2 is purely kinematical, in other words it pertains to 
differential and integral calculus in the variables of time and space. There is 
shown how inequality requirements imposed on a moving point in Rn may 
be enforced through conditions involving its velocity vector. The example of 
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the Sweeping Process, which is governed by a differential inclusion of first 
order, provides an introduction to the mathematical aspects of Unilateral 
Dynamics. 

In Sect. 3 is developed the elementary example of the dynamics of a punc
tual particle unilaterally confined by a frictionless material boundary with 
prescribed motion. The traditional aim of rational mechanics, that of elim
inating the unknown reactions of frictionless constraints, is attained in the 
form of a differential inclusion. In this simple mechanical example, the decisive 
step leading to the Contact Dynamics method is introduced. It consists in re
placing the familiar formulation of frictionless contact by an apparently more 
complicated relationship involving velocities. The advantage of this transfor
mation is illustrated by its application to a time-stepping scheme for the 
numerical approximation of the motion. 

The framework for treating multibody multicontact systems is constructed 
in Sect. 4. This starts, as usual, with the parametrization of the system posi
tions by means of an element q of R n, after what the geometrical conditions of 
non-interpenetration of the system members and their possible confinement 
by external obstacles are assumed expressed by a finite set of inequalities. A 
contact corresponds to one of these inequalities being satisfied as equality. At 
every instant such that the derivative dqjdt = u ERn exists, every possible 
contact involves a vector U of local relative velocity of the contacting objects 
which, generically, is expressed as an affine function of u. As far as the contact 
actions consist of a simple force R, calculating the element r of R n made of 
its generalized components is only the matter of matrix transposition. If the 
traditional assumption of differentiability of t f---t u is made, the equations of 
the system dynamics may be written down through Lagrange's formalism or 
any other method of stereodynamics. 

Exploiting these equations requires some information about the possible 
contact forces. Such an information receives a codified form in Sect. 5 under 
the name of a contact law, generically a relationship between Rand U, usually 
depending on the actual configuration attained by the system. Here again, 
the special case of frictionless contact is taken as an introduction. It allows 
one to stress the importance of the concept of a 'prospective' contact law. 
Roughly speaking such a law, rather than connecting the actual values of R 
and U, pertains to their limits on the right of the concerned instant. The 
Coulomb law of dry friction receives an adaptation to such a formalism. 

Then comes in Sect. 6 the application of the preceding to the construc
tion of a time-stepping numerical scheme for the numerical approximation 
of solutions, first developed in the traditional framework of smooth motions, 
i.e. the unknown function t f---t u is assumed locally absolutely continuous. 
This scheme is of the implicit type with regard to u. Due to the form given 
to contact laws and to their discretized forms, this time-stepping procedure 
automatically secures the preservation of the non-interpenetration conditions 
and manages the possibility of contact breaking. 
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In contrast, the event of the sudden introduction of new contacts, i.e. 
collisions, leads in Sect. 7 to giving up the framework of smooth dynamics, 
since u is expected to exhibit jumps. Henceforth, the function u is assumed 
to be of (locally) bounded variation on the considered time-interval. With 
such a function, there classically is associated an Rn-valued measure du on 
the time-interval, which may be called the differential measure of u. Smooth 
dynamics is retrieved as the special case where du possesses a density function 
with regard to the Lebesgue measure dt. 

The measure du presents an atom at every instant of discontinuity of u, 
but this functional framework may also accomodate other sorts of frictional 
catastrophes, as referred to in 7.1. Instead of a classical differential equation, 
dynamics is now governed by a measure-differential equation. Contact actions 
are not necessarily represented as time-dependent forces but as impulsion 
measures. Their integrals on a time-interval constitute impulsions, a familiar 
concept in traditional dynamics. 

Since the time-stepping numerical procedure of Sect. 6 consists of drawing 
the balance of impulsions on each time-step, it remains formally applicable 
to non-smooth evolutions. There does not seem objectionable to apply the 
precedingly identified contact laws so long as the measure du is diffuse, i.e. 
u continuous. The case of a collision occuring at some instant tc is more em
barrassing since each contact-impulsion throughout the system is liable to 
possess an atom at point tc. The weight of such an atom is nothing but the 
vector traditionally called a percussion, say P. In 7.5 an efficient computation 
trick is introduced, by which P is connected, through Coulomb's law in the 
prospective form, with some weighted mean of the pre- and post-collision val
ues of the local velocity U. The resulting calculation is definitely richer than 
the traditional laws of restitution in that all contacts present in the system 
at instant tc are collectively taken into account, but its phenomenological 
validity has to be tested in each application context. 

N onsmooth dynamics does not allow one to draw energy balances as pre
cise as those traditionally available for smooth evolutions. The reason is that 
some rules of the differential and integral calculus have to be replaced by a 
calculus of differential measures, shortly presented in Sect. 8. The thermody
namic correctness of collision models requires dissipativity, a property which 
is not always confirmed by energy balances, as drawn there. 

As final illustrations, two examples of the numerical application of the 
foregoing are presented. 

In Sect. 9 a two-dimensional model of a stone bridge is used to show how 
the collapse mechanism under some localized forcing depends on the value 
admitted for the interblock friction coefficient. 

Section 10 is devoted to the numerical simulation of the construction of a 
conical pile of grains. Eager controversy took place in recent years about the 
experimental finding of a local minimum of ground pressure at the vertical of 
the pile apex. The numerical exploration of stress in a numerical simulation 
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conducted by the CD method appears to remove any paradoxical features 
from this subject. 

2 The differential handling of inequality conditions 

2.1 Expressing viability in terms of velocity 

Let us understand by a moving point a mapping q of a (time) interval I into 
Rn. We want q(t) to comply for every tin I with some inequality 

f(t, q(t)):::; 0, (1) 

where f : I X Rn --+ R denotes a C1 real function. In other words, q(t) is 
required to belong for every t to .P(t) := {x ERn I f(t,x):::; 0}. 

It is assumed that, fort in I and x in Rn, the gradient '\lf(t,x) := 

( 8 f I 8x1 , ... , 8 f I 8xn) is a nonzero n-vector. 
Let some t be such that the right-side derivative q'+ ( t), called the right

side velocity of the moving point, exists. Through the chain rule, the real 
function T r--+ f ( T, q( T)) is found to possess at T = t a right-side derivative 
equal to J; ( t, q( t)) + q'+ (t). V f(t, q( t) ). This derivative should be :::; 0 if (1), 
assumed to hold everywhere in I, is satisfied at t as equality. In contrast, if 
inequality holds strictly at t, no sign condition comes to restrain right-side 
derivatives. 

Fort in I and x in Rn, put 

r(t x) := {{vERn I J;~t,x) +v.'\lf(t,x):::; 0} if f(t,x);::: 0 
' R n otherwise. 

so that the above observation means q'+(t) E F(t, q(t)). 
What follows may be viewed as providing a converse. 
Suppose that the interval I, nonnecessarily compact, contains its origin 

t 0 and that q is locally absolutely continuous on I. Equivalently, the (two
side) derivative dqldt exists almost everywhere in I and equals a function 
u : I --+ R n, the velocity function, which is locally integrable with regard to 
the Lebesgue measure on I; notation : u E .Cfoc(I; Rn), meaning that u is 
Lebesgue-integrable over every compact subinterval of I. And, for every t in 
I, one has 

q(t) = q(to) +it u(s) ds. 
to 

(2) 

The following is established in [58]: 

Viability Lemma. Assume that q is locally absolutely continuous on I and 
that the inclusion 

dq 
dt E r(t, q(t)) (3) 
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holds for almost every t in I. If inequality ( 1) is verified at the initial instant 
t0 , it is verified for every subsequent t. 

The term viability is used in system theory and control, in particular 
when economic systems are concerned, to express that the trajectory of a 
process should remain in a specified set (one may refer to [4], a book actually 
developed in a too sophisticated topological context for such an elementary 
statement as the above Lemma to find place in it). 

2.2 Selectors 

A condition of the form (3) is called a differential inclusion [5][21]. Since the 
right-hand side is set-valued, uniqueness is a priori not expected to hold for 
the solutions (if any) to initial value problems. By a selector of the 'multifunc
tion' (t, x) H r(t, x), one means a single-valued function, say (t, x) H 1(t, x), 
such that 1(t,x) E r(t,x) for every t and x. Then 

dq 
dt = "Y(t, q(t)) (4) 

is a differential equation whose (locally absolutely continuous) solutions, if 
any, consequent to some initial condition verifying (1), meet the assumptions 
of the Viability Lemma, making q(t) belong to cJ>(t) for every subsequent t. 

A basic example is provided by taking as 1 the 'lazy selector' of r, i.e. by 
defining 1(t, x) as the element of r(t, x) with minimal Euclidean norm. When 
f(t, x) < 0, i.e. when x belongs to the interior of cJ>(t), the set F(t, x) consists 
of the whole of R n, so that 1( t, x) equals 0, the zero of R n. Otherwise, 
r(t, x) equals a half-space which contains 0 if ff(t, x) :::; 0, in which case 
1 = 0 again. If fi(t,x) > 0, one finds 1 = -(ff/IIY'fii 2 )V'f, a vector oriented 
in the direction of decreasing f, normal at x to the hypersurface f(t, .) = 
Const drawn through this point. 

For such a choice of 1, a solution to ( 4) consequent to some initial position 
q(t0 ) in cJ>(t0 ) may be described as follows. The point q(t) belongs for every t 
to the moving region cJ>(t). As long as it lies in the interior of cJ>(t), q stays at 
rest. It is only when the boundary of cJ>(t), i.e. the hypersurface with equation 
f(t, .) = 0, moves inward and reaches q that the point takes on a velocity in 
inward normal direction, so as to go on belonging to cJ>(t). The magnitude of 
the velocity vector equals the 'normal speed' of the hypersurface. 

We have proposed to call Sweeping Process the above kinematical associ
ation of point motions to the given motion of a set (in Rn or in a real Hilbert 
space). See [42][59] for references and recent developments of the subject. 

2.3 Characterizing the process by a differential inclusion 

If, at timet, a point x lies on the hypersurface f(t, .) = 0, the vector V' f(t, x) 
(we have assumed it nonzero) normal to this hypersurface is directed outward 
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of the region <I>( t). The half-line emanating from the origin of R n, generated 
by \lf(t,x), is said to constitute the (outward) normal cone to <P(t) at point 
x; notation: N4>(t)(x). The definition of a normal cone for less regular sets 
than P is a vast subject; some other cases will be met in the sequel. For x 
in the interior of <P(t), it proves consistent to view N4>(t)(x) as reduced to 
the zero of R n, while the cone shall be defined as empty if x tf. <I>( t). By 
discussing the various cases occuring in the calculation of the lazy selector, 
one sees that if 'Y( t, x) equals this selector, every solution q to the differential 
equation ( 4) verifies, for almost every t, the differential inclusion 

(5) 

Unexpectedly the converse is true, i.e.(5) in spite of its multivalued right
hand side actually is equivalent to the differential equation ( 4), as far as 
locally absolutely continuous solution are concerned. 

In fact let q : I -+ Rn, be such a solution to (5). For almost every t, the 
two-side derivative q' = dqjdt exists, so that the right-hand member is non
empty and therefore q(t) E <P(t); the same is true for every t, by continuity. 
Fort such that q(t) happens to lie in the interior of <P(t), (5) implies q' = 0, 
which makes that (4) is also satisfied. Otherwise, suppose that q(t) belongs 
to the boundary, i.e. the function T r--t f ( T, q( T)) vanishes at T = t. Then 
the right-derivative f£(t,q(t)) + q'+(t).\lf(t,q(t)), if it exists, is::; 0 while, 
symmetrically, the left-derivative is 2:: 0. Therefore q' ( t), when it exists, sat
isfies f£(t, q(t)) + q'(t).\1 f(t, q(t)) = 0, i.e. it belongs to the boundary of the 
half-space r(t, q(t)). Furthermore, (5) entails that q'(t) is directed along the 
inward normal to the half-space. All this elementarily characterizes q' ( t) as 
the proximal point to 0 in T(t,q(t)), namely 'Y(t,q(t)). 

It was under the formulation (5) that the Sweeping Process was primi
tively introduced [47][50], with <P(t) denoting a nonempty closed convex sub
set of a real Hilbert space H. The motivation then was in the quasi-static 
evolution of elastoplastic systems [48][49]. The convexity assumption allows 
one to establish the existence of solutions under rather mild conditions con
cerning the evolution of <P(t), even discontinuous. Another consequence of 
this convexity is that the multifunction x r--t NP(t)(x) is monotone in the 
following sense (see e.g. [8]) : whichever are x1,x2 in H, Yl in NP(t)(xl), 
Y2 in NP(t)(x2), one has (x1 - x2).(y1 - y2) 2:: 0, with the dot denoting the 
scalar product of H. By elementary calculation, this inequality entails that, if 
t r--+ q1(t) and t r--t q2(t) are two solutions to (5), the Hilbert distance llq1 -q2ll 
is a non-increasing function oft. From this non expansion property, it follows 
that at most one solution to (5) can agree with some initial position q(t0 ). 

Another source of interest of the formulation (5) is to render evident that 
the successive positions of the point q are connected with those of the given 
region Pin a rate-independent way. In fact, because the right-hand member is 
a cone, the differential inclusion is found invariant under any non-decreasing 
differentiable change of variable. 
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2.4 Implicit versus explicit time-stepping 

Coming to the numerical approximation of solutions through time-stepping 
schemes, let us denote by [ti, tr], with length h, a time-step ('i' as in initial, 
'f' as in final). From an estimate qi of q(ti), obtained as the result of the 
antecedent time-step, computation has to deliver an estimate qr of q( tr). 

The formulation ( 4) naturally leads to take ui = !'( ti, qi) as an estimate of 
the velocity throughout the time-step, generating the prediction qr = qi + hui. 
This is a computation scheme of the explicit type. 

If ( 5) is discretized by viewing ( qr -qi) / h as a representative of the velocity, 
a strategy of the explicit type would not allow one to express qr, since the 
right-hand member is multivalued. In contrast, the implicit strategy consists 
in invoking the value that this right-hand member would take at the unknown 
point, so one has to solve 

(6) 

(the positive factor h has been dropped since N<P(t£) is a cone). This qualifies 
qr as an orthogonal projection of qi onto <I>( tr). In the case where <I>( tr) is 
convex, the projection is unique and this characterizes qr as the nearest point 
to qi in <I>( tr). In particular qr = qi when qi happens to belong to P( tr). We 
have proposed to call this procedure the catching-up algorithm [50]. 

2.5 Complementarity 

From the description made of the Sweeping Process in 2.2 it is clear that 
velocity may be discontinuous. As for the explicit prediction qr = qi + hui, 
it only requires of Ui to be the derivative of the function q on the right of 
ti. The following observation makes an introduction to analogous, but more 
complicated, situations we are to meet in Dynamics. 

Let q, associated with u through (2), verify (5) almost everywhere in /. 
Let t 1 E I and assume that the function u possesses a limit on the right of t 1 , 

say ui; in view of (2) this limit also provides the right derivative q+(ti). As 
a stronger assertion than ( 4), which pertained to bilateral derivative and was 
only declared to hold almost everywhere, let us prove that ui = l'(t1 ,q(ti)). 

Trivially, both members of this equality are 0 if fi ·- f(t 1 ,q(ti)) < 0. 
Otherwise, i.e. when !I = 0, it was seen that 

(7) 

Inclusion (5) means the existence of a function t H -\(t) :::; 0 such that 
u(t) = >-(t)Vf(t,q(t)). Since 'ilf is continuous and nonzero, the assumed 
existence of ui secures that of the right-limit >-i and 

(8) 
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If it < 0, instant t 1 is followed by an interval throughout which f < 0. 
This has been observed to imply u = 0, so that .X vanishes on this interval 
and consequently also its right-limit .Xf. Summing up, one has 

f.+ < 0 \ + < 0 f.1+ \ +1 = 0, 
1 - ' "'1 - ' /\ (9) 

a system of complementarity conditions. This is a popular formalism in many 
research domains where inequality requirements are faced. Solving (8) (9), 
with it defined as in (7), constitutes a linear complementarity problem. 
Through arguments from Convex Analysis, such problems are shown to be 
equivalent to finding the critical points of some quadratic functions over poly
hedral convex sets. In the present setting, where inequality 4i ~ 0 simply ex
presses that uf belongs to the half-space F( h, q( tl)), one readily checks that 
the above system of conditions characterizes uf as the minimizing point of 
the function x H llxll 2 /2 over F(h, q(tl)), namely 1(t1, q(h)) as announced. 

2.6 A hydromechanical illustration 

Assume that n = 2 and that t, x1, x 2 are Cartesian coordinates in physical 
space, with the t-axis vertical and directed downward. Picture the region 
f(t, xl, x2 ) ~ 0 as an underground cavity and the curve x1 = q1 (t), x2 = q2 (t) 
as a stationary waterstream dripping down into it. 

The differential equation ( 4), on account of the diverse circumstances met 
in the definition of the lazy selector, expresses that: i) any part of this stream 
which happens to be detached from the cavity wall is rectilinear and vertical; 
ii) when water runs on the wall, it follows a line of steepest descent (this 
agrees with hydrodynamics under the simplifying assumption that inertia 
effects are negligible with regard to gravity and to liquid/wall friction); iii) 
the dependence of 1 on the sign of f£ makes that the stream can run only 
on a part of the wall exposed upward: when it reaches the rim of a possible 
overhang, water gets loose and falls vertically down as described in i). 

In this example, under the complication typically added by unilaterality, 
the comparison of ( 4) and ( 5) merely reflects the classical equivalence between 
the two standard properties of the lines of steepest descent in a surface: at 
each point on such a line i) the slope is maximal; ii) the direction is orthogonal 
to the level curve of the surface. 

3 Frictionless confinement of a particle 

3.1 Primary formulation 

Notations are the same as in Sect.2, with n = 3. The element q := (q1, q2 , q3 ) 

now consists of the orthonormal coordinates of a material point Q, with 
mass m, moving under the action of a given force field (t, x) H X(t, x) and 
constrained in the region <!>( t) by the impenetrability of its boundary, assumed 
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to be realized as a material surface with imposed motion. This is the occasion 
of recalling that, in Mechanics, the description of a constraint never reduces 
-as it does, for instance, in Optimization or in Abstract System Theory- to 
imposing a geometrical restriction on positions. Some information is needed 
about the mechanical process through which this restriction is enforced. For 
instance, using some servomechanism in order to secure (1) could result in 
quite different motions than those obtained under the present assumption of 
confinement by the contact action of a given material boundary. 

On a time interval I throughout which the motion is smooth enough 
for the velocity function u in (2) to be locally absolutely continuous (this 
precludes collisions, events to which we shall come back later), the motion of 
the particle Q obeys, almost everywhere in I, 

du 
m dt = X(t, q(t)) + r(t), (10) 

where the force r := (r 1 , r 2 , r 3 ) denotes the unknown reaction possibly ex
erted by the confining boundary. In this Section, the confinement process is 
assumed to comply at every instant with the following model: 

• this is a contact process 

f(t,q)<O =? r=O, (11) 

• the possible contact is frictionless 

f(t,q) = 0 =? :3.\ E R: r = .\\lf(t,q), (12) 

• without adhesion 

.\ <::: 0. (13) 

If compared with the definition given in 2.3 for the normal cone N<P(t) (x) 
at a point x, the above system of three conditions is found equivalent to 

-r E N<P(t)(q). (14) 

Therefore, the traditional aim of Analytical Dynamics, namely the elimina
tion of the unknown reactions of the so-called perfect constraints is attained 
by rapproaching conditions (10) and (14) 

du 
X(t,q(t))- m dt E N<P(t)(q(t)), (15) 

an integra-differential inclusion, as the unknown functions q and u are es
sentially connected by (2). Formally, this inclusion implies q(t) E cf>(t) for 
almost every t in I, since otherwise the right-hand member would be empty. 
By continuity q( t) E cf>( t) holds for every t. 
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3.2 The 'Contact Dynamics' approach 

From the theoretical standpoint as well as in the elaboration of approximation 
schemes, the differential inclusion (15) proves difficult to handle (see however 
[64], under the assumption of convexity for the function f). In what concerns 
the position function q, the problem at hand is of differential order 2, as 
expected in a dynamical context, while in the purely kinematical setting of 
Sect. 2, q was the unknown of a differential problem of order 1. However, some 
of the arguments used then will be transposed in what follows. 

Let r be defined as in 2.1. Provided the initial position q( t 0 ) lie in <I>( t 0 ), 

the solutions of (15) are the same as those of 

du 
X(t, q(t))- m dt E Nr(t,q(t))(u(t)). (16) 

In fact (16), assumed to hold for almost every t in I, implies u(t) E 

T(t, q(t)). Since q(t0 ) E <I>(t0 ), the Viability Lemma secures q(t) E <I>(t) for 
every tin I. The definition of r then makes that the normal cone Nr(t,q(t))(u) 
is contained in N<P(t)(q(t)) whatever is u, so that (15) is a fortiori satisfied. 

Conversely, let q be a solution to (15), hence q(t) E <I>(t) for every tin I. 
When f(t,q(t)) < 0, the set N<P(t)(q(t)) reduces to the singleton {0} and the 
same is true for the right-hand member of (16). In contrast, for t such that 
f(t,q(t)) = 0, the set T(t,q(t)) is a half-space and the argument used in 2.3 
proves that the element u(t) = u+(t) = u-(t) belongs to its boundary plane. 
Consequently, Nr(t,q(t)) ( u) consists of the cone generated by V1 f(t, q(t)) hence 
equals N<P(t)(q(t)). 

3.3 First example of a CD numerical scheme 

As before, let us denote by [t;, tr], with length h, a time-step. From the ap
proximate values q;, u; obtained for q and u at t;, one has to calculate qr, ur, 
pertaining to tr. The given force field X is assumed to depend smoothly on its 
arguments, so that one chooses to approximate it throughout the time-step 
by the value it takes at tm := t; + h/2 and qm := q; + hu;/2. It is also at 
the point (tm, qm) that f is calculated, in order to decide whether boundary 
contact is in effect or not and to determine the set r accordingly. Depending 
on the sign of f(tm, qm), the latter equals the whole of R 3 or a half-space 
with V1 f(tm, qm) as normal vector. Inclusion (16) is thus discretized in the 
form 

(17) 

i.e. in view of the right-hand member being a cone, 



www.manaraa.com

14 J. J. Moreau 

This classically characterizes ur as the proximal point to the known element 
Ui + hX(tm, qm)/m in r(tm, qm)· One finishes the calculation with 

This algorithm automatically handles the possible breaking of contact 
this happens if Ui + hX(tm, qm)/m falls into the interior of r(tm, qm)· 

Remark 1.- Provided q(to) E <P(t0 ), inclusion (16) has been precedingly ob
served to secure f(t,q(t)):::; 0 at every consequent t. But, in the above time
stepping procedure, it is only ur which, at each step, is constructed as an 
element of F(tm, qm), so that the Viability Lemma is just involved through 
time-discretization. One thus may fear that some violation of the inequal
ity would build up from step to step. Actually, if the step-length is not too 
large, numerical experiments show some self-corrective effect which, on the 
contrary, tends to reduce violations. This effect seems related to <P(t) possess
ing a nonempty interior. In contrast, in industrial softwares devoted to the 
dynamics of machines, some bilateral constraints are commonly introduced, 
leaving a set of feasible positions with empty interior. Their treatment in 
terms of velocities [28] then requires corrective procedures to prevent cumu
lative errors. 

Remark 2.- The calculation of ur from ui is based on mechanical elements 
evaluated at the mid-position qm; in turn, ur is used to calculate from qm 
the final position of the current step and, from there, the mid-position of 
the subsequent time-step. This interleaving makes the above time-stepping 
procedure resemble the policy called 'leapfrog' in Molecular Dynamics simu
lations. In order to figure out how it improves precision, compared with an 
ordinary Euler explicit time-stepping scheme, one may apply it to calculating 
the parabolic unconstrained motion of a particle in a uniform gravity field. 
If h is constant, the values found for q at the successive steps coincide with 
the exact solution, while the Euler scheme generates cumulative errors. Of 
course, when an algorithm of the above sort is implemented with constant h, 
one may calculate each qm from the antecedent one by a single incrementa
tion. The proper output of the computation, namely qr, may not be needed 
at each step. 

Remark 3.- In contrast with the approach of the motion of a point in a 
surface through the traditional methods of dynamics, the above time-stepping 
procedure does not require calculating the curvature of the boundary. This 
curvature is implicitely accounted for by the fact that the direction of V' f 
evolves from one step to the other. The question of existence of solutions to 
(15) or (16) is not addressed in this paper; one naturally expects that f has 
to be twice dfferentiable. 
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4 Multicontact systems 

4.1 Parametrization 

Let the possible configurations of a body collection be parametrized (at least 
locally) through generalized coordinates, say q := (q1 , ... , qn). For the sake 
of reducing the number n, this parametrization may be constructed with ac
count of possible permanent, frictionless linkages imposed on the members 
of the system. After that, the constraints of non-interpenetrability are addi
tionally considered. The geometric restriction consequently imparted on the 
system positions is assumed expressed by a finite set of inequalities 

fa(t,q) S:. 0, a E {1, ... ,~~:}, (18) 

where h, ... , f"' are given functions. Through the presence of t as an argu
ment of fa, provision is made for the inequality to describe the confinement 
of a member of the system by some external obstacle or boundary with pre
scribed motion. Under this parametrization, a motion of the system consists 
of a mapping t E I H q(t) E Rn and, as in the foregoing, this mapping is 
assumed locally absolutely continuous, i.e. there exists a locally integrable 
velocity function u : I ---+ Rn from which q may be retrieved in the form (2). 

As an example, one may consider a pair of members of the system whose 
positions in a chosen reference frame are well located as soon as the value of 
the element q of Rn is known (together with the time t in case of a time
dependent parametrization). Then, one may take as fa the expression, as 
a function of (t, q), of some measure of the overlap of the two bodies. This 
overlap should be understood as a directed quantity, so that it becomes neg
ative in case the bodies lie apart from each other. The convention applied in 
(18) of characterizing the permitted configurations through the S:. 0 inequal
ity, comes from Convex Optimization theory, where such a sign convention 
offers technical advantages. No convexity hypothesis is made here concerning 
the functions fa: since such an assumption would not be preserved under a 
change of parametrization, it cannot in general have any mechanical mean
ing. If one prefers to deal with the ~ 0 symbol, there only is to consider, 
instead of the overlap the opposite quantity, usually called the gap between 
the considered bodies. 

The above formalism is not limited to collections of strictly rigid bodies, 
since q may also include parameters accounting for a finite-freedom approxi
mation of deformability. Such additional parameters possibly arise from some 
modal representation of the deformation dynamics or from the Finite Element 
discretization of deformable parts [37]. 

4.2 Contact kinematics 

Suppose that inequality fa S:. 0 expresses the local non-interpenetration of 
some pair of members of the system, say B and B ', so that equality fa = 
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0 corresponds to these bodies touching each other at some point of space 
denoted by Me., This we shall assume here to be an isolated contact point, 
but other contacts, associated with different values of a, may also be in effect 
between the same bodies at the same instant. For every imagined motion 
t f--7 q( t) bringing the system through the considered contacting position for 
some t, with a definite value of u = dqjdt ERn, the velocity vectors Va and 
V ~, relative to the chosen reference frame, of the respective particles of B 
and B' passing at point Ma let themselves be expressed as affine functions 
of u. The same is thus true for the relative velocity Ua = V a - V ~ of body B 
with respect to body B' at this point, say 

(19) 

where Ga : Rn -+ E 3 (the space of the vectors of physical space) denotes 
a linear mapping, depending on t and q. No attention is paid at this stage 
to the imagined motion preserving contact or not. The term Wa E E 3 , a 
known function oft and q, vanishes in the familiar case of a time-independent 
parametrization. 

Similar formula holds if inequality fa :::; 0 expresses the confinement of a 
member B of the system by some external material boundary with prescribed 
motion. Assume that equality fa = 0 corresponds to contact taking place at 
some point, here again denoted by Ma. The local velocity, at this point, of 
body B with respect to the boundary has the same form as Ua in (19), where 
Wa now reflects the known velocity of the boundary (for a time-independent 
parametrization, Wa equals the negative of this velocity vector). 

At the contact point Ma, we assume that a common tangent plane to 
the respective surfaces of the concerned bodies has been defined. This does 
not require of both surfaces to be smooth; for instance, contact may take 
place between a smooth body and some corner point or sharp asperity of the 
other. Let na denote the unit vector normal to this plane, directed toward 
B. In computation, as well as in existential studies, it proves useful that 
the definition of the above elements would be conventionally extended to a 
neighbourhood of the concerned value of (t, q) in R x Rn. This allows one to 
express as a function of (t,q) the normal gap, say ga(t,q), between Band B', 
counted as negative in the case of overlap. Classically, the derivative of the 
function t f--7 ga(t,q(t)) is found equal to Ua.na, the normal component of 
the relative velocity of the contacting bodies at point Ma. 

Sometimes, in Computation literature, the second time-derivative of the 
gap is improperly referred to as the 'normal relative acceleration'. Actually, 
since the material particles involved in the definition of Ua are not the same 
from an instant to the other, this second derivative has in general nothing to 
do with the relative acceleration vector. As an example, one may consider a 
body of circular or spherical shape: a variety of rotations may be imparted 
to such a body without altering its overall location, so yielding the same gap 
while the normal acceleration is changed. 
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Remark.- The representation of non-interpenetration through of a finite 
set of inequalities is operative in most practical situations. However, non
interpenetration cannot be described in that way in the neighbourhood of a 
configuration where two sharp asperities or corners come into contact by their 
points. This is evidenced by the fact that, in this case, the set of the values of 
the local right-velocity U;t which are compatible with non-interpenetration 
is not a convex cone anymore. In contexts where the probability of such an 
event cannot be treated as negligible, numerical techniques have to resort 
to adequate procedures (possibly involving Ua) for the identification of a 
mechanically plausible contact plane. 

4.3 Contact forces 

Assume that the contact actions that body B experiences at point Ma from 
body B' are described as a simple force na (there would be no conceptual 
difficulty in adding to this description some local torque, accounting for a 
resistance to rolling). Then B' experiences from B the force - R a. The stan
dard machinery of Analytical Dynamics needs a representation of this pair of 
forces, in regard to the chosen parametrization, through its covariant compo
nents (or 'generalized components'), namely the element ra of Rn expressed 
as 

ra = G~ Ra, (20) 

with G~ : E 3 ---+ Rn denoting the transpose of Ga. 
The convention of implicit summation will never be applied to Greek in

dices. 
If inequality fa ::=:; 0, expresses the confinement of a member B of the 

system by some external obstacle with prescribed motion, (19) still holds 
with Ua denoting the local velocity of B relative to this obstacle. Then it is 
found that ra in (20) consist of the covariant components of the force na 
alone, acting on B at the contact point. Its counterpart, exerted by B upon 
the obstacle, is not in this case a force experienced by the system. Incidentally 
observe that the term Wa does not appear in (20). 

4.4 The equation of Dynamics 

As before, the context here is that of standard dynamics, involving the second 
derivative of the function t H q(t). Therefore the velocity function t H u(t) 
is required to be locally absolutely continuous. Using Lagrange's technique 
or any other tools from classical solid dynamics, one obtains a differential 
equation, to be read as an equality of elements of Rn 

A(t,q)~~ = F(t,q,u) + l:ra, (21) 
a 
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where A denotes the n x n inertia matrix. The expression F comprises cer
tain standard terms (commonly referred to as 'centrifugal' and 'gyroscopic') 
and also the covariant components of some applied forces, supposed given as 
functions of time, the position of the system and its velocity. The elements 
,.a, a E {1, 2, ... , "'}, are made of the covariant components of the respective 
contact forces, as expressed in (20). 

The same formalism remains more generally valid with q related to some 
velocity function u by other kinematical relations than (2). For instance, when 
dealing with 3-dimensional rigid bodies, it is usual to attach to each of them 
a frame of principal axes of inertia emanating from its center of mass. Then 
one may choose to enter, among the constituents of the Rn-valued function 
u, the three components relative to these axes of the spin vector of the rigid 
body, instead of the time-derivatives of some directional parameters. This of
fers the considerable advantage of generating a contribution in the matrix A 
which is diagonal and constant with regard tot and q. Retrieving from these 
spin components the evolution of some directional parameters of the con
cerned body is only the matter of integrating adequate kinematical formulas. 
Correlatively, if forces are applied to the rigid body, the total moments of 
these forces about the same axes should be entered as covariant components 
into the corresponding lines of the right-hand side of (21). 

Since contact forces vanish when contact is not in effect. the summation 
in the right-hand side of (21) may be restricted to the values of a belonging 
to 

J(t,q) :={a E {1, ... ,,.,} I fa.(t,q) 2: 0}. (22) 

The geometric conditions (18) of non-interpenetrability, joined to the dif
ferential equation of dynamics (21), clearly are not enough for determining 
the motion consequent to initial data. Some phenomenological information 
should be added, concerning the contact forces. Since the contact phenom
enon takes place in physical space, this information is expected to involve 
the vectors no., Ua., as well as the values of t and q specifying the actual 
configuration of the system. Hence, for every a labelling a possible contact, 
a relationship of the form 

law a ( t, q, Ua., no.) = true, (23) 

called a contact law, should be available. 

5 Contact laws 

5.1 Frictionless contact 

Under the present notations we are to meet the same circumstances as in 
Sect. 3. If the contact labelled a concerns two bodies denoted by B and B ', 
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with common normal unit n"' directed toward B, the assumptions of no
friction an no-adhesion mean 3p"' ;:::: 0 : R"' = Pan"'. It has been agreed in 
the foregoing to extend the definition of n"', at least in a neighbourhood of 
the concerned values oft and q, to cases where g"', the normal gap, takes 
nonzero values and to state R"'=O if g"' > 0. Define 

K (t ) ·= { {V E E 3 I V.n"' ;:::: 0} if ga(t, q) :S 0 
"' ' q · E3 otherwise. 

This is the set of the values of the local right-velocity of B relatively to B' (the 
latter may be a member of the system or an external obstacle with prescribed 
motion) which are compatible with non-interpenetration. In the first line, Ka 
equals a half-space, hence the normal cone Nx:,, evaluated at the origin 0 
of E3 , equals the half-line generated in this vector space by -n"'. Otherwise 
Ka = E 3 , so that the cone Nx:, (0) reduces to the set {0}. 

Therefore, at timet, the no-friction and no-gluing assumptions (including 
the case of no-contact) are equivalent to assert 

(24) 

The move made in Sect.3 of replacing inclusion (15) by inclusion (16) admits 
as a counterpart here the replacement of inclusion (24) by 

(25) 

In fact, in this context where u is continuous, the same argument as in 2.3 
shows that Ua belongs to the boundary plane of the half-space Ka, hence 
Nx;,(Ua) = Nx;,(O), while in case of no-contact Nx:,(Ua) = {0} whatever 
is Ua. In short, (25) contains all the stipulations implied when a contact is 
declared frictionless. 

But, in addition, (25) entails Ua E Ka(t, q), since otherwise Nx:, ( Ua) 
would be empty. If ga(t, q) > 0 this actually imparts no restriction on Ua 
while if ga(t,q) :S 0, i.e. a E J(t,q), this implies Ua.n"' ;:::: 0. It has been 
precedingly recalled that Ua.n"' equals the derivative of the function t f--7 

ga(t, q(t)). This allows one to invoke the Viability Lemma (2.1), with f = 
-g"'' in order to prove that the assumption of (25) being verified for almost 
every t in I entails : non-interpenetration holds for every t > t0 , provided it 
holds at to. 

The latter statement applies more generally to any contact law which, 
among other phenomenological stipulations, secures the following 

• in all cases Ua E Ka, 
• if Ua E interior Ka, then R"' = 0. 

In other words, one has the implications 

(26) 
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(27) 

We propose to say that a package of information, concerning the possi
ble contact labelled o:, if it possesses these two properties, is a contact law 
of prospective type (or, in the terminology precedingly used by the author 
[58][59], a complete contact law). The underlying idea is that such a law does 
not properly govern the values of Ua and na at the actual instant, but their 
limits on the right of this instant, assumed to exist. In fact, if U:x.na > 0, 
the concerned instant is followed by a contactless time-interval. Since no: 
vanishes over this interval, the same is true for its right-limit. 

5.2 Multicontact frictionless Dynamics 

We are now to see how the observations made in Sect.3 let themselves be 
transposed into the present setting. Even the simple case then considered, of 
a particle confined by a frictionless material boundary, may exhibit multicon
tact features if the boundary consists of several parts with smooth equations, 
each of them enforcing an inequality of the form (18). If two of these smooth 
surfaces meet to form an edge, the particle, when lying on this edge, expe
riences contact forces from both parts, the resultant of which may take any 
value in the convex cone generated by the respective inward normals. There
fore, the writing in (14) remains valid provided N<P(t)(q) is defined as the 
convex cone generated by the outward normals to the surfaces which form 
the edge. 

When coming to general multicontact systems, one has to connect nor
mality in the linear Euclidean space E 3 of the vectors of physical space with 
normality in the space Rn of the abstract components. The following rela
tionship is found to hold [52] between the element \7 fa of Rn and the normal 
unit vector n" at point Ma to the contacting bodies, directed toward B 

(28) 

The proof of this rests on a unilateral version of the algebraic theorem of 
Lagrange multipliers, known in Convex Analysis as Farkas' lemma [69]. 

In all the sequel, we shall assume that the mapping Ga is surjective of 
R n onto E 3 ; equivalently, its transpose G~ is injective of E 3 into R n. Then 
Aa in (28) is nonzero. Some special positions of a multibody system may give 
rise to 'wedging' effects which contradict this assumption. 

In view of (19) and (20) this allows one to replace the laws of frictionless 
contact, either (24) or (25), by equivalent relationships involving only the 
abstract components u and r" instead of Ua and R"'. Under the definition 
(22) of J, put 

W(t,q) :={vERn /Vo: E J(t,q) 8ft"+ v.'Vfa :S:, 0}, (29) 
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a polyhedral closed convex set. One then finds [59] that a value r of the sum 
La r<> is compatible with the contact law (25) holding for all o:, if and only if 
-r E N w ( t ,q) ( u). Consequently, the elimination of frictionless reactions from 
the dynamical equation (21) is achieved in the writing 

du 
F(t,q,u)- A(t,q) dt E Nw(t,q)(u). (30) 

This allows one to derive a time-stepping scheme for the numerical approx
imation of solutions quite similar to the one presented in 3.3. The occurrence 
of the matrix A in (30) at the place occupied in (16) by the scalar factor m 
does not constitute an essential complication. It only means that, instead of 
the standard Euclidean metric of R 3 , one is using in Rn the Euclidean metric 
defined by the positive definite matrix A. 

5.3 Handling inequality conditions in terms of acceleration 

The differential inclusion (30) formally resembles (5) which has been found to 
characterize the Sweeping Process. In fact, in the special case where F = 0 
and A = 1, (30) makes the function t H u appear as a solution to the 
Sweeping Process by the moving (closed, convex) set t H W(t, q(t)). Of 
course, the latter is not given, since it depends on q which itself is connected to 
u by (2), but one may infer from this analogy that, similarly to the equivalence 
of (5) to (4), the inclusion (30) could be replaced by a differential equation 
whith right-hand member defined by a minimization property. This is the 
object of the forthcoming. 

A time-stepping scheme of the implicit type, rests on predicting the veloc
ity whithout resorting to any expression of the acceleration. In contrast, what 
follows is aimed at determining the right-acceleration u+' which is needed 
when a scheme of the explicit type is being planned, as well as an Event 
Driven calculation [1][65]. 

Let h denote an instant preceded by some time-interval throughout which 
the motion, with absolutely continuous u, satisfies (30). Assume that u re
mains continuous at instant t 1 , i.e. no collision occurs. Non-interpenetration 
entails that, for every o: in J(t1 , q(ti)), the right-derivative of the function 
t H f a(t, q( t)) at ii is :S: 0, while the left-derivative is ?: 0. Hence this function 
has zero derivative of order one at t 1 . 

Let us assume in this Subsection that the functions fa are C2 . The 
investigation of the motion by explicit time-stepping or by an ED policy 
rests on the assumption that ii is followed by a nonzero interval through
out which (30) is verified again. It just may happen that some contacts 
break at h, inducing a change of J(t,q). If u possesses a derivative on the 
right of t1, the function t H fa(t,q(t)) possesses a second derivative on the 
right of t1, expressed through the chain rule with a certain aa, in the form 
aa(tl, Ql, ui) + ui.'Vfa(tl, qi). Since the function is zero at t1, as well as its 
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first derivative, non-interpenetration requires of this second derivative to be 
:S 0. If it is strictly negative, fa ( t, q( t)) becomes strictly negative on a sub
sequent interval, making the corresponding quantities ra = J..La \7 fa vanish 
on this interval, as well as their limits for t .J_ t 1 , assumed to exist. One thus 
obtains a set of complementarity conditions 

By joining them to the equation of dynamics 

one reduces the determination of ui and of the multipliers J..La to a Linear 
Complementarity Problem in standard form. 

Because the matrix A is positive definite, such a problem is classically 
equivalent to minimizing a convex quadratic function in a closed convex poly
hedral subset of Rn. It has been shown in [45][46] that this extremal charac
terization of the acceleration may be viewed as extending Gauss' Principle of 
the Least Deviation to mechanical systems subject to unilateral frictionless 
constraints. Some dual minimization property is also found to characterize 
the contact forces. 

5.4 Coulomb friction 

The presence of dry friction, governed by the law of Coulomb, at the pos
sible contact with label a, is expressed by a relationship of the form (23). 
Traditionally, the law of Coulomb is only invoked for persistent contact, but 
when devising numerical schemes, making it meaningful for Ua.na ~ 0 and 
securing that a contact law of the prospective type is so stated, is just the 
matter of writing the code adequately. 

Apart from the numerical success, the consistency of the concept of pros
pective type is illustrated by the following feature. 

Dropping the label a for brevity, one defines the (non adhesive) Coulomb 
friction at some contact point by giving the Coulomb cone C, a closed con
vex conical region of E 3 to which the contact force R exerted by B' upon 
B should belong in any circumstance. In the standard case, C is rotationally 
symmetric about the normal vector n and contains it, but more general situ
ations, accounting for anisotropic friction, are possible. The law consists in a 
relationship between the force R and the local velocity U of B relative to B' 
which resembles a plasticity law in that the values of R lying in the interior 
of C are compatible with U = 0 only. But the 'flow rule' which characterizes 
the values of U compatible with a value of R lying on the boundary of C 
does not involve the normality of U to this boundary. In short, this is not an 
'associated' flow rule (except in the case of zero friction coefficient). 
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The concept of bipotential has been introduced by De Saxce and Feng 
[23] as a tool for handling non-associated force/velocity (or stress/strain-rate) 
laws, from the theoretical standpoint, as well as in numerical techniques. Here 
is the aspect this concept takes in the case of Coulomb friction. 

As usual, one decomposes the vectors R and U into their normal and 
tangential components. Let T denote the subspace of the vectors in E 3 which 
are orthogonal to n. 

R = RT + RN n, RT E T, RN E R, 

U =UT +UNn, UTE T, UN E R. 

Classically, if the Coulomb law is restricted to situations where RN is known, 
say RN = 1, the law turns out to reduce to a relationship between RT and UT 
of the associated type. Let D1 := {RT E T I RT + n E C} (the 'unit section' 
of the cone C) and define in T the real function (the 'dissipation function' of 
the said restricted law) 

T E T f-t 'Pl(T) := sup{S.T IS E -Dr}. 

In the traditional case of isotropic friction with coefficient /, one simply has 
cp1(T) = riiTII· 

Similarly to 5.1, define 

K(t ) ·= { {V E E3 I V.n ~ 0} in case of contact or overlap 
'q · E3 in case of no-contact. 

The Coulomb cone depends on t and q; put C = {0} in case of no-contact. 
Using arguments from Convex Analysis, one establishes that the relation 
between the elements U and R of E 3 consisting of the system of conditions 

U E K, R E C, -U.R = 'Pl(UT)RN (31) 

is a contact law of the prospective type which, in the standard situation, 
reduces to the law of Coulomb. 

Furthermore, one may prove 

\f V in K, \f S in C : V. S + 'Pl ( VT) SN ~ 0 

so that (31) expresses that the real function (V, S) f-t V.S + cp1 (VT)SN, 
separately convex with regard to V and S, attains at point (U, R) its minimal 
value relative to the product set K x C and that this minimal value is zero. 

6 Time-stepping 

6.1 Numerical dynamics of multicontact systems 

As before, denote by [th tr], with length h, a time-step. From the approximate 
values qi, ui obtained for q and u at ti as the result of antecedent computation, 
one has to calculate qr, ur, corresponding to tr. 
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The inertia matrix A(t, q) is assumed to depend smoothly on t and q, so 
that one chooses to approximate it throughout the time-step by the value Am 
it takes at the 'midpoint' tm := ti + h/2, qm := qi + hui/2. Similarly, the term 
F(t, q, u) in (21) is assumed to vary slowly enough for allowing one to replace 
it by the value Fm it takes at t = tm, q = qm, while the value Ui of u is used. 
Thereby it is understood that the force fields or pull-back actions which, 
among other terms, are compounded into the function F, do not depend on 
q in too steep a way. If such is not the case, a trick to overcome this difficulty 
is presented in [36]; it results in replacing A by an artificial inertia matrix in 
the construction of which the possible stiff elasticity coefficients are entered. 

It is also at the point (tm, qm) that the functions fa are calculated, in order 
to decide which contacts are to be treated as effective. The set J(t, q(t)) is 
thus estimated to equal Jm := J(tm, qm) throughout the time-step. 

The dynamical equation (21) is then discretized in the form 

Am(ur- ui) = hFm + L pa, (32) 
aEJrn 

where the element pa of R n is made of the covariant components of the 
impulsion at contact a, i.e. the integral P" over [ti, tr] of the contact force 
na. Throughout the time-step, one ascribes to the linear mapping G~ of (20) 
its value computed at (tm, qm), hence 

(33) 

One does the same with the linear mapping Ga and with the rheonomic 
term Wa of (19). Since a discretization scheme of the implicit type is being 
planned, the final velocity ur is invoked, so as to calculate 

(34) 

In the exact problem, the contact law with label a should connect Ua 
to the contact force na at every instant. Our approximation scheme of the 
implicit type consists in connecting, through the same relationship, the final 
value Ua.f of Ua to the average of this force, namely pa /h. In usual situations 
such as the no-friction case described by (25) or also the case of Coulomb 
friction, the contact law happens to be positively homogeneous with degree 
zero relatively to the contact force, so the discretized law reads 

lawa(tm, qm,Ua,f, Po.)= true. (35) 

6.2 Nonlinear Gauss-Seidel iterations 

Solving the system of conditions (32) to (35) is the hard part of the compu
tation. From (32) and (33), one obtains 



www.manaraa.com

An introduction to Unilateral Dynamics 25 

ur=ur+A;;;I 2: G~Pf3, (36) 
{JEJm 

where Ur := Ui + hA;;;I Fm may be called the relaxed velocity. Here is an 
iteration technique a la Gauss-Seidel which amounts to treating a succession 
of single-contact problems. 

Let an estimated solution ( u[sti, P!tJ, (3 running through Jm, be ob
tained with (36) satisfied. One expects to obtain a corrected estimate, say 
( u£orr, Pfarr), by selecting a label a and altering only pn, i.e. by making 

Pfarr = P!ti for (3 i- a. The new estimate is astrained to verify (36); equiva
lently, since the old estimate satisfies the same, 

ucorr = uesti + A-lG* (Pn _ p<> ·) 
f f m a corr esti (37) 

and to satisfy the discretized contact law (35). By applying Gn to both mem
bers of (37), one gives to (35) the form 

where Hn := GnA;;;1 G~ is a symmetric positive definite 3 x 3 matrix. 
Solving (38) in the unknown P::"orr is easy in some significant cases [52], 

such as two-dimensional Coulomb contact or the case where Hn is axissym
metric about n<>. Generally, some iterative procedures may be applied, in 
which the normal and tangential components of the contact force are alter
natively treated as known. Anyway, when a solver has been devised, the above 
procedure of correcting successive estimates is iterated, with a ranging cycli
cally in Jm· The decision of stopping iterations may be made on observing 
the magnitude of the vector P::Orr - P::'sti; this actually is equivalent to check
ing the precision at which each pair ( u[sti, P::'sti) satisfies the corresponding 
contact law. 

Observe that, provided such a numerical convergence check is made, the 
linear operator Hn in (38) may be replaced by any other mapping of E 3 

into itself with zero limit at the origin, with the possible advantage of mak
ing resolution easier. This replacement is also used in tricks for accelerating 
convergence. 

The mathematical convergence of algorithms of this sort, in the case of 
Coulomb contact, as well as the very existence of solutions to the problems 
addressed, has only been established in special situations [44][40]; uniqueness 
cannot be expected in general. 

If all the contact laws invoked are of the prospective type, one sees that, for 
each a, the final relative velocity Unr belongs to Kn(tm, qm)· Similarly to 3.3, 
Remark 1, this ensures non-interpenetration with a welcome self-corrective 
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effect if the step-length is not too large. Contact laws of the prospective 
type also manage automatically the possible breaking of contacts, without 
resorting to any analysis of complementarity conditions. 

To start iterations, one needs an estimate ( uf'sti, P!tJ verifying (36). One 
may take u[sti = Ur and all P!ti equal to zero. In cases where the set Jm 

of the active contacts does not change much from one step to the other, it 
could be much more efficient to take as first guess for the P!ti the values 
calculated at the antecedent time-step for the contacts already present and 
to adjust uf'sti by means of (36). 

Anyway, iterations do not require the handling of large matrices since, 
in the representation of each Go. for a rigid body, only a 3 x 6 submatrix is 
nonzero (2 x 3 in the case of a two-dimensional multibody system). 

Also observe that, due to the computation being of the implicit type 
relative to velocity, a single computation step is needed to check whether a 
given position of the system is that of a possible equilibrium. One just have 
to launch iterations with ui = 0 ; if Uf is found zero, the corresponding set 
of computed values for the contact forces is compatible with equilibrium. In 
this sort of application, the inertia matrix A only provides the backbone of 
the computation and its value may be chosen so as to ease convergence. 

7 N onsmooth dynamics and collisions 

7.1 Discontinuous velocity functions 

The preceding Sections were developed in the context of usual 'smooth' dy
namics, in which the velocity function u is assumed locally absolutely con
tinuous on the time interval I. The properly 'unilateral' feature was only the 
possibility offered to contacts of breaking at any instant. 

In contrast, the sudden occurrence at some instant tc of a new contact, 
i.e. a collision is expected to generate a velocity jump. Even without such an 
event, the presence of dry friction at a contact point has long been known, 
in some cases, to forbid the existence of a smooth solution beyond some 
catastrophic instant, on the left of which the contact force, as well as the 
derivative u', may become unbounded [24]. This is a dynamic analogue to the 
locking situations familiarly met in the statics of frictional systems. Around 
year 1900, such a lack of smooth solution for an apparently well set problem 
seemed inadmissible to P. Painleve and induced him to question the very 
concept of a contact force. Hence the inadequate denomination of 'Painleve's 
paradox' which has been given to the observation. Today, one is accustomed 
to see models reaching the limits of their validity domain. Such is the case for 
smooth dynamics at a catastrophic instant of any sort, so that one is induced 
to enlarge the function space where u is looked for [52][71]. 

In order to develop Nonsmooth Dynamics, the widely accepted extension 
of the functional framework is that of Rn-valued functions with bounded 
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variation. More precisely, since the time interval I has not been supposed 
compact, we consider the linear space of the functions with locally bounded 
variation, i.e. they have bounded variation over every compact subinterval ; 
notation lbv(J, Rn). Any u in this space is locally Lebesgue-integrable, so that 
(2) remains meaningful. The classical property of a function with bounded 
variation to possess a derivative almost everywhere has no relevance in the 
present situation, for such a pointwise defined derivative of u (generating 
values for the accelerations of the system elements in physical space) does 
not allow one to retrieve the function through integration. In fact, the possible 
discontinuity points of u, which make at most a countable, hence Lebesgue
negligible, subset of I may be responsible in an essential way for the evolution 
of this function. For instance, a step-function possesses almost everywhere a 
derivative equal to zero without having to be a constant. 

The role of the function u' is now played by an Rn-valued measure on I, 
called the Stieltjes measure or differential measure of u, that we shall denote 
by du. In the smooth case, where u is locally absolutely continuous, one has 
du = u' dt, with dt denoting the Lebesgue measure (this is nothing but the 
differential measure of the real function t f--7 t). 

Classically, a function u in lbv(J, Rn) possesses a left- and a right-limit at 
every point t of I, say u-(t) and u+(t) (with the convention u-(t0 ) = u(t0 ) 

and symmetrically at the possible other end of I) and one has for every 
compact subinterval [a, T] of I 

In particular, the integral of du over the singleton {a} equals the possible 
jump of u at point a. 

7.2 A measure-differential equation 

Since one cannot rely on the second derivative of the function t f--7 q(t) 
anymore, the accelerations of the elements of the system in physical space 
are also missing, as well as forces. The latter have to be replaced by E 3-

valued measures, the integrals of which over every compact subinterval of I 
constitute impulsions. In smooth dynamics, the impulsion measures admit, 
relatively to dt, some density functions whose values, at a given instant, 
are properly forces, so that impulsions, in accordance with the traditional 
definition, equal their time-integrals. 

In particular, instead of a contact force R a, there will more generally 
be invoked a contact impulsion, an E 3-valued measure on the time interval 
I. For the homogeneity of notations, let us denote by dSa this measure, 
without having to pay attention to any function sa admitting it as differential 
measure. The covariant components of dSa, relative to the parametrization 
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in use, are Rn-valued measure on I, say dsa, which, similarly to (20), are 
defined as 

(39) 

This expression makes sense if the linear mapping G~ depends continuously 
on t and q, an assumption usually verified in multibody dynamics. 

The differential equation of dynamics (21) has then to be replaced by 

A(t,q)du = F(t,q,u)dt+ Ldsa, (40) 

an equality of Rn-valued measures on I, called a measure-differential equa
tion. 

Concerning the connexion of this writing with a general formulation of 
classical dynamics, refer to [54]. It may be asked why (40) is given the re
stricted form of an equality of measures, instead of an equality of distributions 
of arbitrary order on the interval I. Our answer, in the present context, is 
that nonsmoothness comes from the contact actions which, due to unilater
ality are subject to inequality requirements (even in the more general case 
of adhesive contact [26][68]). This is a basic fact that distributions verifying 
inequalities are necessarily measures. 

Such an equality of measures may equivalently be exploited as an equality 
of functions, thanks to the following observation. Given a finite collection of 
R-valued or Rn-valued measures, such are dt, du and dsa above, there exists 
(non uniquely) a nonnegative real measure on I, say dJ.L, relatively to which 
these measures respectively admit density functions t~ E Cfoc(I, dj.L; R), u~ E 

Cfoc(I, dj.L; Rn), (sa)~ E Cfoc(J, dj.L; Rn). Then (40) is equivalent to the equal
ity of Rn-valued functions 

( 41) 

holding dJ.L-almost everywhere in I. Replacing the base measure dJ.L by another 
admissible one amounts to multiply densities by positive real functions [53]. 

There remains to precise how contact laws may be entered into this for
malism. As observed before, in the case of Coulomb friction as well as in 
the no-friction case, contact laws in the form (23) are conic, i.e. positively 
homogeneous of degree zero with regard to the argument R"'. If the density 
of contact impulsion (Sa)~ is introduced at the place of na in the contact 
law, the relationship so stated between the contact impulsion measure and 
the local velocity function Ua is thus indifferent to the change of the base 
measure. Such a policy does not seem questionable as long as the measure 
dj.L and, consequently, the measure dSa are diffuse on the considered time
interval. In this case u is continuous, so that the local velocity Ua is well 
defined for every t. 
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7.3 Collisions 

In contrast, assume that, at some instant tc, a velocity jump occurs as the 
result of a collision. 

The measure du then presents an atom at the point tc of I and the same 
should be expected from the other measures involved in the calculation. Nec
essarily the base measure dfJ in use presents an atom at tc and dfJ may be ad
justed in such a way that this atom has unit mass, i.e. the said atom is a Dirac 
measure located at tc. With dfJ so specified, the value po. = (S0 )~(tc) of the 
density of contact impulsion for the contact labelled a, is nothing else than 
the vector called percussion in the traditional formalization of shocks. Conse
quently, the measure equation ( 40) readily applies to the standard question of 
determining the post-collision velocity u+(tc), knowing the pre-collision value 
u- ( tc), provided some information is available about contact impulsions. 

An information of this sort is implicitely included in the various pragmatic 
approaches proposed in the form of collision laws, since the very times of 
Descartes or Newton. These laws usually involve empirical parameters meant 
to account for the 'bounciness' of the collision (coefficients ofrestitution) and 
for the possible role of friction during the process. It is today recognized that 
such parameters can only be identified in narrowly delimited situations [72] 
such as the collision of two, otherwise free, spherical beads. The coefficients 
possibly determined for a pair of free bodies are not valid anymore if any of 
them is subject to additional constraints [32]. It should be kept in mind that 
if one of the bodies involved in a collision is part of a cluster of contacting 
objects, nonzero contact percussions should be expected at all contacts in the 
cluster. 

Viewing a collision as a strictly instantaneous process is a schematic 
model, pertaining to the dynamics of strictly indeformable bodies. In con
trast, if some slight deformability of the colliding bodies is evoked, a nonzero 
time-interval, say [tc, tc + 8], should be ascribed to the interaction. Large 
values of the contact forces are expected, the time-integral of which over 
this interval makes the contact percussion vector, but at this scale smooth 
dynamics remains applicable. 

Studies of the latter sort are usually developed through a multiple scaling 
approach : a micro-time is introduced, in order to investigate the variation of 
the velocity function, while the variation of the position q is neglected. The 
direction of the sliding velocity Ua at some of the involved contacts may be 
found to exhibit large variations as a function of the micro-time, preventing 
the identification of any representative value which could, phenomenologi
cally, be connected with the total impulsion pa. The situation is better if Ua 
remains zero : because the Coulomb cone, closed and convex, is constant with 
regard to the micro-time (see however the discussion in 8.1), the condition of 
no: belonging to it commutes with the integration invoked in defining po.. 

Deeper investigation of collision processes has also been conducted, by 
taking into account the whole deformation of the interacting bodies, either 
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analytically [43] or numerically thanks to the finite element representation 
of deformability [76]. This also comes to confirm that collision laws can only 
roughly approximate the complexity of the process. 

7.4 Frictionless inelastic collision 

In the time-stepping scheme of Sect. 6, contact forces were involved only 
through their total impulsions on each time-interval, so that it remains ap
plicable to problems formulated in the nonsmooth framework. This numerical 
procedure handles collisions in an automatic way. It only happens that, in 
the course of computation, a time-step exhibits some contacts not detected 
at the preceding step. Since the velocity ur has to comply with some non
interpenetration conditions from which ui is exempt, the contact impulsions 
pcx involved in (32) are expected to take values of larger magnitude than 
in the case of constant Jm. But calculation remains the same and delivers 
kinematically admissible post-collision velocities. In short, because the con
tact laws (35) have been assumed positively homogeneous with degree zero in 
their last arguments, the algorithm treats collisions on the same footing as 
permanent contacts. 

There remains to precise which collision model the algorithm turns out 
to approximate. Assume for simplicity that a single contact has come to 
increment Jm, i.e. there occured a single impact at some unknown instant tc 
of [ti, tr]. The endpoint values Ui and Uf are viewed as approximating u- (tc) 
and u+ (tc) respectively. 

We first have a look at the calculation to be made in the special frictionless 
setting of 5.2. The polyhedral set W defined in (29), namely the set of the 
values of u+ compatible with all non-interpenetration conditions, including 
the new one, is approximated by 

As in 6.2, one constructs the relaxed velocity Ur := Ui + hA;;,1 Fm. If the 
positive definite matrix Am is used to define in Rn a Euclidean metric, the 
core of the computation simply consists in constructing ur as the nearest point 
to Ur in W m· By imagining the step-length h arbitrarily close to zero, one 
sees that the calculation approximates the following collision law : 

The post-collision velocity u+ ( tc) equals, in the sense of the kinetic metric 
A(tc,q(tc)), the nearest point to u-(tc) in W(tc,q(tc)). 

Let us refer now to the contact locus, in the notations of 5.1. The above 
calculation amounts to admit that, for each a, the contact impulsion pa is 
connected, through the law offrictionless contact (25), with the post-collision 
velocity U;!;. Due to this law being of prospective type, the implication pa =/= 
0 =? U;!;. na = 0 holds, meaning that, if the contact labelled a takes an 
effective part in the nonsmooth process, it exhibits the feature traditionally 
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formulated by saying that the Newton restitution coefficient is zero. But, 
depending on the circumstances met in constructing the projection, one may 
also have pa = 0, with u;t. na only astrained to be nonnegative. 

The present model (it was introduced in [51] under the name of Standard 
Inelastic Shock) is somewhat more realistic than the traditional Newton state
ment, in that all the contacts present at instant tc are treated collectively. This 
produces plausible results for instance in the case, popular in the Earthquake 
Engineering literature, of a rectangular block rocking on a horizontal plane: 
if the traditional formulation, with zero restitution coefficients, was applied 
to all contacts, no rocking could be found. In contrast, the above collision law 
allows one to discuss the outcome with regard to the aspect ratio of the block. 
A slender block presents a succession of oscillations, progressively damped by 
the inelasticity of collisions, while, below some critical aspect ratio, a single 
episode of motion leads to permanent contact. 

7.5 A three-parameter collision law 

In the same line, there remains to show how non-zero friction and non-zero 
restitution can be entered into a computationally efficient collision model. 
At an instant where the system experiences a velocity jump we propose, 
for every contact a, to relate through the Coulomb law of friction (stated in 
prospective form) with friction coefficient "fa, the contact percussion pa with 
some average value U~ of the local velocity. This artificial value is defined as a 
weighted mean of the (known) pre-collision velocity U;;_ and of the (unknown) 
post-collision velocities U;t. Introducing as before the normal and tangential 
components of the concerned vectors, put 

ua = ~u- + - 1-u+ 
aN 1 + Po: aN 1 + Po: a:N 

ua = __2::_ u- + - 1- u+ . 
o:T 1 + T a aT 1 + T a aT 

(43) 

(44) 

The empirical parameters Po: and To: will be called the normal coefficient of 
restitution and the tangential coefficient of restitution at the contact labelled 
a, denominations justified by what follows. 

Since the invoked contact law is of the prospective type, implications (26) 
and (27) show that pa can be nonzero only if U~N = 0, i.e. U;t;N = -paU;:N, 
which formally is Newton's restitution law. But the present formulation is 
richer than stipulating a normal restitution law separately for each contact ; 
it also allows pa: = 0, in which case only the inequality U~N ~ 0 happens 
to be asserted. It is the global calculation, involving all the contacts together 
through the equation of dynamics, which decides between these two alterna
tives. 
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Similarly, the global calculation, if friction is large enough, may end in 
the zero sliding case of Coulomb's law at contact a. Then u;t:T = -Ta u;;T, 
which is a law of tangential restitution. 

The construction of the average velocity may readily be incorporated into 
the time-stepping computation scheme of Sect.6, so that the algorithm is 
ready to face possible collisions at every instant. At the price of a few extra 
lines of code at each time-step before launching the Gauss-Seidel iterations, 
no computation cost at all is added to the iterations themselves 

Of course the same collision model may be used in conjonction with other 
solvers [38][39]. 

The time-stepping scheme also yields plausible results when some of the 
frictional catastrophes referred to in 7.1 are met [52]. 

It should however be admitted that relating the percussions pa to the 
respective average velocities U~ is nothing but a pragmatic trick, generating 
a collision law of the sort which precisely was criticized in 7.3. Before relying 
on it in a specific context, one has to check its practical value against any 
available experimental measurement. 

In the simplest case of all, that of the collision of two otherwise free 
spherical beads, the resulting law turns out to be mathematically equivalent 
to another three-parameter collision model anteriorly proposed on the basis 
of quite different arguments [76] and which, experimentally, has been found 
in fairly good agreement with reality [25]. 

The various circumstances met when a ball bounces against a fixed plane 
are also convincingly reproduced, in particular the exotic behaviour of a 'su
perball' [55] [56]. 

The rocking of a slender block supported by an oscillating table has pro
vided another occasion of testing the model. Some sensitive features of the 
rocking regimes have been correctly predicted by CD computation [66]. 

It is in the domain of the numerical simulation of granular materials that 
the computational simplicity of the procedure proves invaluable. In fact, one 
may then have several ten thousands of contacts to investigate at each time
step. 

Some satisfactory comparisons of computation with experiments are pre
sented in [55] [56], pertaining in particular to the circulatory currents observed 
in shaken granular samples and their connection with the segregation of grain 
sizes [41]. 

The study of the flow of grains over a rough incline has also benefited 
from joining experimental investigation with CD numerical simulations [14]. 

The efficiency of the method in the dynamics of granular materials mainly 
stems from that, once a time-discretization has been chosen, all the collisions 
which have been detected as occurring on a given time-step are treated to
gether. This of course entails some trade-offs which have to be assessed. It 
does not seem to matter that the ordering of collisions, which mechanically 
should be successive, is only internal to the algorithm. In fact the problems 
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in view are physically undeterministic, since a slight change in the initial con
ditions is liable to generate after a short time a completely different sequence 
of positions and collisions. A more critical issue is that each contact point is 
only counted once in the analysis. An accumulation of bounces, such as those 
of a ping-pong ball coming to rest, is thus viewed as a single collision as soon 
as the successive bounces are all comprised in the time-step. This could result 
in underestimating the total energy loss arising from inelastic collisions. This 
source of error may be checked by repeating computation with step-length 
reduced to half: if no appreciable change is found in the energy versus time 
curve, one may conclude that no harm was done. 

It has been stressed in the foregoing that, in compact assemblies, the bod
ies involved in a collision may be part of clusters of already contacting objects, 
between which percussions are likely to be induced. The described procedure 
of global dynamical calculation does take this into account. Physically how
ever, the transmission of impulses in clusters should involve elasticities in 
a way analogous to sound propagation, an effect which cannot be analyzed 
through the present model of strictly rigid objects. 

Anticipating on the question of energy balance, to be studied in the next 
Section, one may finally rise another objection. Like other popular collision 
laws, the trick of average velocities offers no security against the possible 
violation of the laws of Thermodynamics. In fact, for colliding objects of not 
too usual shapes, the calculated outcome may entail some energy creation. 
This is a physically inacceptable conclusion, except of course for artificially 
boosted collisions as in electric billiard games. A systematic thermodynamic 
formalism has been proposed by M. Fremond [27], securing that the empirical 
collision laws one may insert in it are dissipative [15][16]. 

8 Energy balance and calculus for differential measures 

8.1 Departing from smooth dynamics 

Drawing the energy balance of a dynamical evolution is essentially relevant to 
the case where the external obstacles or boundaries are fixed in the (Galilean) 
reference frame in use. In the smooth dynamical context of Sect.4 it was al
luded to the possibility of constructing the parametrization (q) with account 
of linkages or permanent hinges through which members of the system would 
be connected with some external supports. Also these external supports have 
to be assumed fixed, in order to obtain a 'scleronomic', i.e. time-independent 
parametrization. This makes the inertia matrix A(t, q) constant with regard 
to its first argument and gives to the kinetic energy of the system an ex
pression which, for every q, is a positive definite quadratic form in u, namely 
Ek = Aijuiui /2. In this framework of smooth dynamics, one classically es
tablishes that the time-derivative of Ek equals the total power of the forces 
experienced by the system, including the contact forces between members 
and the possible action of external supports. If contacts are frictionless as 
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well as the (fixed) possible external hinges the corresponding terms in the 
power vanish. In the familiar case where, additionally, the other forces in 
presence derive from a potential energy, the integration of derivatives yields 
the well known property of energy conservation. 

In contrast, the elementary example of a particle hitting 'inelastically' a 
fixed frictionless plane shows that, in nonsmooth situations, the absence of 
friction does not secure energy conservation anymore. Mathematically, the 
reason is that the formula for the time-derivative of a product of (locally ab
solutely continuous) functions, used in establishing the energy balance in the 
smooth case, has to be replaced by less precise relationships to be presented 
in 8.2 below. The physical background needs some comments. 

The discussion sketched in 7.3, in which a nonzero time-interval [tc, tc+B] 
was, at least qualitatively, assigned to the process, makes one understand 
that the small deformations that the contacting bodies undergo during the 
collision may generate values of the local velocity vector Ua disagreeing with 
condition Ua.na = 0, while the vector na itself may exhibit transient varia
tions. The instant power of contact forces can then be nonzero, yielding for 
their total work over the time-interval a nonzero, commonly negative, value. 
The same remark applies to the external linkages asserted to connect the 
system with fixed supports : even frictionless, they may transmit work to 
the outside world. This induces one to question, when nonsmooth circum
stances are met, the legitimity of involving these linkages in the construction 
of the parametrization : the fact that such linkages are perfect in the sense of 
the traditional smooth dynamics does not secure that the percussions they 
impart in a collisional situation should have zero generalized components. 

8.2 Nonsmooth differential calculus 

Some rules of a calculus for l.b.v. vector functions of a real variable t are 
established in [53]. In particular, one finds expressions for the differential 
measures of functions constructed from elements of l.b.v. through multilinear 
operations. For instance one has 

( 45) 

and various similar formulas where left- and right-velocities are differently 
combined. If the scalar product in Rn is denoted by a dot, this yields 

( 46) 

Furthermore, thanks to the quadratic form u f--'1 u.u = llull 2 being nonnega
tive, one establishes the following inequality, in the sense of the ordering of 
real measures on I 

( 47) 
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This holds true, more generally, in any Euclidean or real Hilbert linear 
space. 

By integrating the concerned measures on the singleton { tc}, one may 
derive from these rules of extended differential calculus a formula for the 
jump of kinetic energy at the instant of a possible collision 

(48) 

This result, sometimes called Kelvin's theorem, actually is of purely algebraic 
nature and one may recognize in it the elementary identity (a+ b).(a- b) = 
llall 2 -llbll 2 applied to the Euclidean metric associated with the inertia matrix 
A = A(q(tc)). If (40) is used here to express A(u+- u-) (recall that the 
measure dt has zero integral on a singleton), this yields 

1 1 t:Jt- £; = 2(u+ + u-).A(u+- u-) = 2(u+ + u-). I>"'· (49) 
Q 

where p"' = G~ P"' is then-vector made of the generalized component of the 
percussion P"' occurring at the contact labelled a. The right-hand member 
equivalently writes down as 

~ L(u+ + u-).G~ P"' = L ~(Gau+ + Gau-).P"' 
Q Q 

"1(_ +) Q 
= ~ "2 Ua + Ua .P . 

Q 

(50) 

Therefrom the jump of £k is expressed as a sum of terms corresponding to 
the respective contacts effective in physical space. Mathematically, it may be 
convenient to view each of these terms as defining the energy or work of the 
corresponding percussion. But one should keep in mind that nothing in this 
analysis can justify the conception that such terms could, each for its part, 
express a separate energy balance for some physical phenomenon occurring 
at the corresponding contact locus. 

As an illustration, one may come back to the frictionless collisions pre
sented in 7.4. Since each percussion P"' was then assumed connected with 
the corresponding U;+: through the law of frictionless contact (25), one has 
U;+:. P"' = 0. From the right-side inequality in ( 4 7), one concludes that such 
collisions essentially involve some energy loss. In contrast, one might stipu
late that the same law of frictionless contact should hold between P"' and the 
arithmetic mean (U;; + U;t;)/2. Then (50) would entail energy preservation. 
Note that if some of the contacts involved take place between a member of 
the system and some external obstacle, the latter must be fixed. 

When invoked in the space Rn of the parameters, the norm and scalar 
product should be understood in the sense of the kinetic metric. More gen
erally than in the above investigation of an instant phenomenon, the energy 
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balance of the possibly nonsmooth motion of the system over a time inter
val may be stated as an equality of measures, in which the evolution of the 
matrix A is taken into account [52][53] . 

9 Behaviour of a masonry structure 

The dynamics of block assemblies has been submitted to CD computation, in 
order to simulate their response to seismic actions [34]. In this domain of ap
plication, it may be necessary to take also into account a slight deformability 
of the blocks and the presence of mortar joints [2] . 

Fig. 1. Friction coefficient 0.6 

Fig. 2. Friction coefficient 0.3 

Numerical simulation is applied here to a two-dimensional model of stone 
bridge in order to display its collapse under some localized forcing. The pur-
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pose is pedagogical, with a view to make clear that the ruin is not the result 
of the crushing strength of stone beeing exceded, but has to be discussed 
in terms of geometry and of the unilaterality of non-interpenetrability con
straints [29][30]. If mortar joints are present between stones, their strength is 
neglected and the contact described as obeying the Coulomb law of friction. 
Coulomb himself, when investigating this issue, observed that, in practical 
instances, the friction coefficient was large enough for no sliding to occur 
between archstones so that the evolution toward collapse consisted of the 
opening of some joints through the relative rotation of the corresponding 
archstones about hinge points. 

The structure, initially in equilibrium under its own weight, is submitted 
to the action of an external object with imposed motion, forcing the central 
archstone down. Computation of the subsequent motion is performed twice, 
with the respective values of 0.6 and 0.3 for the friction coefficient at all 
contacts. 

10 Stress distribution in a conical grain pile 

10.1 Constructing a pile 

Numerical simulation is a popular mode of investigation in granular mechan
ics. In particular, dry cohesionless granular materials are naturally modelled 
as collections of bodies which interact by contacts affected with Coulomb fric
tion. Provided the model is sufficiently validated by comparing some measure
ments, feasible in laboratory on physical experiments, with the correspond
ing numerical results, computer simulation may bring precious informations 
about intimate mechanisms and quantities otherwise inaccessible. 

The following observation has, in recent years, started a lot of speculation 
and controversy [11][70]. If a conical pile is created by pouring grains from 
a point source onto a rough rigid horizontal ground, some experimentalists 
have been surprised to find that the distribution of pressure at various ground 
contact points was not proportional to the height of the material above and 
even that some local minimum of ground pressure could be present at the 
vertical of the apex. 

The distribution of stress in a granular material not only depends on 
the forces actually exerted on it, but strongly also on the way the granular 
mass has been prepared. Numerical simulation thus has to reproduce the 
preparation process. 

Figure 3 displays a view of the following numerical experiment [61], per
formed with the Contact Dynamics algorithm of Sect. 6. A pile of about 
14000 spherical grains is constructed by depositing grains, one by one, at the 
contact of already existing ones. Grains diameters are distributed at random, 
uniformly from 0.25 em to 0.5 em. The fixed horizontal ground roughness 
is simulated by a random pavement of grains with the same distribution of 
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Fig. 3. View of the pile 

sizes. Friction coefficient : 0.4 everywhere. Restitution coefficients : 0. Grav
ity : 981 cm/s2 . The vertical of a grain center at the time of its deposition is 
chosen at random in the neighbourhood of the Oz axis at a maximal distance 
of 0.8 em. Deposition frequency : 200 per second. 

A large part of the deposited grains run down the pile slope before stop
ping, sometimes triggering avalanches. The velocity of running grains may 
reach 24 cmjs. For sufficient precision in calculating these motions, including 
the avalanches, the step length is fixed at 2 x 10- 4 s. The duration of the simu
lated phenomenon equals 72 s, so that 360 000 steps have been needed. In the 
final stages the number of contact points is about 33 000. The Gauss-Seidel 
procedure remains practical on a microcomputer (but a matter of weeks) for 
a system of such a size because the largest part of the pile stays in quasi
equilibrium : the contact impulsions calculated in the antecedent time-step 
for the contacts already effective are used as first guess in iterations. 

Figure 4 shows, in four stages of the pile building, a slice 2 em thick 
containing Oz. The grains deposited between t = 15.5 and t = 18.7 and 
which, at the considered stage, have their centers in this slice are represented 
in black. One observes that a noticable proportion of the deposited grains do 
not run out on the slopes, but accumulate in the central region so as to cause 
some plastic deformation of the existing granular mass. This deformation 
may be assessed by visualizing the distribution of these black grains at the 
successive stages. Let us call a fossile layer such a collection of grains observed 
at a certain date and deposited during a specified anterior period. 

10.2 Stress distribution 

The programme allows one to choose a line segment in a plane drawn through 
Oz. By rotation about Oz , this segment generates a curved strip in the shape 
of a truncated cone or of a cylinder, across which force transmission will be 
analyzed. To this end, the contacts occurring in grain pairs with centers 
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0 

t = 18.7 s; 3606 grains t = 19.5 s; 3754 grains 

00~ 

t = 31.4 s; 6039 grains t = 72.1 s; 13869 grains 

Fig. 4. Fossilelayers 

separated by the conical or cylindrical surfaces are reviewed. A contact force 
R is retained in the list if the corresponding contact point M has a projection 
onto the separating surface which belongs exactly to the strip. The meridian 
half-plane II containing Misused, in order to decomposeR into a component 
Rz in the Oz direction and a component Rr in the axifugal direction (the 
component of 'R orthogonal to II is not investigated). The sum of all 'Rz in 
the list, as well as the sum of all 'Rr , are divided by the area of the strip. 
This yields the components in II of a vector Tn which may be viewed as the 
average density of meridian force transmitted across the strip. 

Fig. 5 . Reciprocal cuts 

In a classical continuous material, possessing a Cauchy stress tensor field, 
the similar construction would deliver an average density of meridian force 
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related to the strip normal unit v in the form Trr = O"IJV, where O"IJ denotes a 
symmetric two-dimensional tensor. Symmetry implies a reciprocity property 
for a pair of (conical or cylindrical) strips drawn through a given point, with 
respective normal units v and v' and force densities fii and Th : one readily 
finds v. Th = v'. fii. For a common value equal to zero, there comes out that 
the strip with normal v is parallel to Th if and only if the strip with normal 
v' is parallel to fii. 

That a granular material, observed at large scale, admits a Cauchy stress 
field like any continuous medium is a familiar fact, for instance in Soil Me
chanics. When some numerical simulation has revealed the values of inter
granular forces, the assessement of the average stress over a delimited sample 
is also a classical matter but the question of the representativity of the sam
ple, in regard to its size, needs investigation. In fact, photoelastic experiments 
as well as numerical simulations reveal that the transmission of forces in a 
granular mass in equilibrium exhibits a certain inhomogeneity. Loads hap
pen to be carried by privileged grains forming force chains. A sample has 
naturally to exceed the size of these chains in order to yield a representative 
value of stress. For an investigation of this subject through Contact Dynamics 
simulations, see [57][60]. 

The purpose of Fig. 5 is to check that, in the present numerical experi
ment, the numbers of grains is large enough for the above reciprocity property 
to hold reasonably true, in spite of sampling aleas (a two-dimensional exam
ple, with irregular polygonal grains is presented in [60]). 

Fig. 6. Reference to fossile layers 
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Figure 6 shows the same 2 em thick slice as before, with two fossile layers 
outlined. This suggests the following approximate law : 

In each point of the pile, the average density of meridian force Tn cor
responding to a cylindrical strip with axis Oz has the same direction as the 
meridian section of a fossile layer containing this point. 

This distribution of meridian forces expresses an arching effect , present 
even in the central region of the pile. 

In the peripheral bank, which has been constructed by the deposition of 
avalanching grains, the fossile layers are nearly parallel to the free surface. 
Through the reciprocity property, this is equivalent to saying that, on a con
ical cut parallel to the free surface, the average density of transmitted force 
is vertical. This feature looks natural since the bank is made of layers suc
cessively deposited by avalanches. When such a layer stops, the supporting 
forces it experiences from the material beneath should equilibrate its weight, 
and this verticality of transmitted forces is expected to persist after other 
layers possessing the same property have been superimposed. 

10.3 Ground pressure 

Ground contacts: 2367 

Fig. 7. Average ground pressure in annular regions 

The central core of the pile clearly has part of its weight supported by the 
arching effect of the peripheral bank and this explains that in some experi
ments, a local minimum of ground pressure has been found at the vertical of 
the pile apex. Figure 7 displays the results obtained in the present numerical 
simulation. The supporting ground surface has been divided into annular re
gions with axis Oz and uniform width. For all the contact points between the 
pile and the rough gound surface wich project in one of the annular regions, 
the total vertical component of the contact forces is divided by t he area of 
the region, yielding the corresponding average pressure. The graph shows the 
respective values of this pressure (in deciPascal) plotted against the distance 
to Oz . Regions of small radii are naturally more subject to sampling aleas 
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than the larger ones, but a central local minimum is in evidence. The pressure 
at center is smaller than the hydrostatic pressure which would be found in a 
liquid column of the same height and the same average volume mass, namely 
3320 dPa corresponding to the height of 5.5 em and a volume mass of 0.615 
(in computation, the volume mass of the material the grains are made of has 
been taken equal to 1). 

Anyway, the statics of a pile of dry grains has nothing to do with hy
drostatics. This is evidenced by the fact that the free surface of the pile at 
rest is not horizontal. The merit of the reciprocity property disclosed in the 
foregoing is to establish a mathematical connexion between the arching effect 
and the inclination of the free surface. 
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1 Introduction 

The most relevant structures of the past centuries are the masonry structures, 
for instance large masonry arch bridges and monumental buildings. 
Today and in the future, cable supported bridges are the most challenging 
solutions to solve long span crossings 
The aim of the paper is first to examine the structural behaviour of some 
important past masonry works, as the Pantheon, the S. Peter dome and the 
Colosseum, and then to analyse the behaviour of cable stayed and suspension 
bridges, characterizing the actual and future development of large structures. 
For masonry arches and domes it is possible to emphasize that the geometrical 
shape and the mass distributions are the main factors that determine the 
static behaviour and the ultimate strength with respect to live load and to 
time deterioration action. 
In the masonry arches and domes the dominant internal forces distribution 
is characterized by the compression stresses produced by the structure dead 
load. 
For such structures infact the self-weight distribution and a clever geometrical 
shape define the load capacity (of the structure). 
Similarly also for long span bridges the geometry and the tensile forces in the 
cables produced by dead loads, are the main elements influencing the bridge 
service behaviour with respect to the live actions due to traffic loads and 
wind forces. 
Increasing the bridge dimension the deformability and aerodynamic stability 
are likely the critical aspects and the technical limits for the feasibility of 
very long span bridges. 
The analysis and results given in the paper can help to understand the basic 
and common structural features of the large past and future structures. 
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2 Static and strengh of masonry constructions 

The main lines of the Statics of masonry constructions, in the framework 
of the no tensile strength model, are here preliminarily recalled. From this 
assumption the real final strength capacity of the masonry structures, due 
only to the weight, comes out. References of this study are the Heyman 
works and some further developments performed at the Department of Civil 
Engineering of the University of Roma Tor Vergata quoted in Bibliography. 

2.1 Some recalls of the statics of masonry structures 

The key assumptions of the simple model of the masonry material: 
sliding failure cannot occur 
masonry is unable to sustain tensile stresses 
masonry has an infinite compressive strength 
elastic strains are negligible. 

The masonry continuum can be represented as an assemblage of rigid particles 
of stone held together by compressive forces, and liable to crack as soon as 
tensile stresses begin to develop. The very small size of the stones compared 
to the dimensions of the whole structure allows us to consider a continuous 
body instead of a discrete system composed of a large number of particles. 

Statics of masonry structures based on the assumption of rigid in com
pression tensionless material is confined to a "limit analysis theory" and the 
corresponding statical and the kinematical theorems can be formulated. So, 
as far as the statical theorem is concerned, the existence of any internal state 
of admissible stresses in equilibrium with the given loads q, is sufficient to 
guarantee the existence of the admissible equilibrium in a masonry body un
der the action of the loads. The actual state of equilibrium attained under 
the action of given loads remains, on the other hand, undetermined. 

To these uncertainties of the theory, we can supply with the observation 
that the masonry structure, by means of small mechanism displacements, is 
able to accommodate itself to the unavoidable small settlements of founda
tions or to the same elastic strains. A simple arch, in fact, that suffers small 
unknown movements apart the abutments, accommodates itself to the slightly 
increased span by cracks forming "hinges" and therefore a mechanism sagging 
at the crown. The arch becomes a three pin statically determinate structure 
that, among all the possible positions of the thrust line, has the shortest span 
and the highest rise: the thrust thus attains its minimum value. 

This simple statement, pointed out by Heyman for the first time, has a 
general validity even if it can become less evident as in case of structures that 
exhibit much more complex patterns of cracks or when settlements involve 
vertical displacements of columns or walls. To clarify this concept, let us con
sider a masonry structure in a given admissible equilibrium state under the 
action of the loads. We assume the existence of a thrust transmitted by the 
structure to its foundation or to its substructure and vice versa. 
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Fig. 1. The settled arch 

In order to point out the action of this thrust upon the structure, we can 
remove the constraint whose action is J-lr. A release has been thus allowed 
and the masonry body is loaded by external forces represented both by the 
loads q and the reaction J-lr, this last applied at the abutments along the 
release direction. The equilibrium is statically admissible. 
The structure now slightly cracks to accommodate itself to small settlements 
of its foundation or, more generally, to a deformation of its substructure. 
Further information can be obtained with the following argument. Let v be a 
mechanism corresponding to the predicted settlement and J-l the correspond
ing kinematically admissible multiplier, in the sense that the structure attains 
the mechanism state v under the loads q and the reaction J-lr , i.e. 

J-l (r, v) + (q, v) = 0 (1) 

Among all the mechanisms v, a statically admissible state of stress is 
attained at the actual mechanism vo . The corresponding multiplier m(vo) 
thus reaches its maximum among all the kinematically admissible reaction 
multipliers J-l(v). 
In the next, in this framework, the study of the statics of three important 
masonry monuments in Rome, the Pantheon, the St. Peter dome and the 
Colosseum, - whose behaviour in a certain sense is similar to that of a masonry 
dome - will be pursued. 
The study of the masonry dome, particularly of the hemispherical dome, 
the more common for constructional grounds, shows the strong differences 
in behaviour between the no tensile strength model and the elastic one with 
tensile strength. At the same time, by comparing the theoretical previsions 
with the various real situations, the effects of the vanishing masonry tensile 
strength are also shown. Particularly, the gradual decreasing of this strength, 
frequently due to a slow deterioration during the time, leads the behaviour 
estimated by the no tensile strength model near to that of the real masonry 
structures. 
For an hemispherical masonry dome, under its weight, - the dominating load 
- tensile strength involves hoop stresses and, therefore, the presence of tensile 
ring stresses along all the lower wide zone of the dome. In such a condition 
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the dome does not push against its drum(Fig.2). 
The gradual vanishing of this tensile strength, substantially changes the stress 
state in the dome. Meridian cracks occur and the dome is subdivided in slices 
whose behaviour is similar to the masonry arch. With the lack of hoop stresses 
the pressure surface is not confined on the mean surface of the dome. 

Fig. 2. Hoop stresses in the dome exhibiting tensile strength 

At the springing, where the mean surface of the dome presents a vertical 
tangent, the pressure surface will form an angle with the vertical line: the 
thrust on the drum wall will be activated (Fig.3). 

Fig. 3. The activation of thrust in the cracked dome 
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In the extreme case, the pressure line, winding through the thickness of 
the dome, can touch the extrados and the intrados of the dome. Circular 
cracks will be formed along the intrados and the extrados of the dome and a 
collapse mechanism can also occur, as shown in Fig. 4. 

Fig. 4. The collapse mechanism for an hemispehrical dome under its weight 

Statical efficiency of a masonry dome is based on its capacity to take up 
the new stress state corresponding to the activation of the thrust. A well 
shaped dome, with a proper meridian curve and a proper mass distribution, 
at the occurrence of the meridian cracking, can explicate a thrust that is well 
absorbed by the drum and the lower pilasters, that will sustain the loads 
with small eccentricities. On the contrary, a masonry dome, not well shaped 
and without a proper distribution of loads, can be strongly damaged when 
the weak tensile strength vanishes and can collapse. 

2.2 An analysis of Pantheon dome 

The Pantheon is one of the most perfect and best preserved monuments of the 
ancient Rome built by the Emperor Adriano, probably with the cooperation 
of Apollodorus, in order to replace an earlier temple built by Marcus Agrippa. 
The rectangular portico screens the vast hemispherical dome. Its true scale 
and beauty can be appreciated only from inside. The rotunda height and 
diameter are equal: 43.3 m. The hole at the top of the dome, the oculus, 
provides the only light. The drum of the rotunda is founded on a massive 
ring of concrete, 6,40 m large at the top, made of travertine fragments in 
layers of mortar and pozzolana, which has become rock-hard with the time. 
The unit weight of the foundation has been calculated equal to 2200 kg/ me. 

The drum of the rotunda is a circular masonry wall of total thickness of 
6 m. A series of alternately larger and smaller brick arches can be seen in the 
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Fig. 5. The Pantheon 

circular wall. These relieving arches span the eight large exedras that we see 
from the interior. 
The dome is built with a reducing thickness- from 6 m to 1,5 mat the center 
-and with a concrete of gradually reducing specific weight from the springing 
to the centre. Right at the top the dome is finished with a compression ring 
which surrounds the opening in the centre. From investigations made in the 
years 1929-1934 it was determined that the cupola is without the ribs assumed 
in the fantastic drawings by Piranesi. 
The distribution of the materials is an expression of a conscious and rational 
arrangement. As shown in Fig.6 at the various heights the different types of 
concrete are made 
1) with aggregates of alternating layers of travertine fragments and lumps 
of tufo (--y = 1800 kg/me) 
2) with aggregates of alternating layers of tufa and fragments of tiles (--y 
= 1700 kglmc) 
3) with caementae of predominantly broken bricks (--y = 1600 kg/me) 
4) with aggregates of alternating layers of bricks and tufa b = 1500 kg/ me) 
5) with caementae of alternating layers of light tufa and volcanic slag (--y 
= 1300 kg/me) 

The dome was cast by pouring concrete over a temporary wooden frame
work containing the templets for the coffers. The workers did not lay out and 
concrete one horizontal ring layer until the course below it was beginning 
to harden so that the requirements for shutter boards and scaffolding were 
considerably reduced. Only the topmost of the cupola presumably required 
an extensive scaffolding. The concrete dome covers the cylindrical hall inside 
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with a simple geometrical figure , a regular hemisphere. The dome, which is 
decorated with coffers, springs from the top cornice. Externally the shape of 
the dome is more complicated, essentially for structural reasons, since the 
cylindrical wall above the level of the springing, which is shown on the fa
cade by the middle cornice, is continued another stage vertically upwards. 
With this ring of wall around the foot of the cupola the builder inhibited side 
slipping and provided a counter-weight which strengthened the cupola in its 
lower zone, so important for stability. 
Large cracks at the intrados of the dome were discovered during the works 
of maintenance in the years 1881-1882. Further research was pursued in the 
years 1932-1936. Very old cracks were observed both on the circular wall of 
the drum and on the cupola, and were repaired. Fig. 7 shows the cracks dis
covered in the 1936 at the intrados of the cupola. 
Probably these cracks appeared straight afterwards the completion of the 
construction. The inscription on the front architrave of the pronaos states 
that the Emperor Settimio Severo Pantheon restored the Pantheon vetustate 
corruptum in the year 202 A.D .. 

Fig. 6. Distribution of the materials 

The minimum thrust has been evaluated considering a slice of the dome 
of the width of 45°. The slice was subdivided into 38 voussoirs whose weight 
had been appropriately evaluated, taking the position of the voussoir into 
account. 

The weight of all the voussoirs of the considered slice is equal to 2377,7 t. 
The total weight W of the cupola is thus W = 2377,73X8 = 19021,8 t . The 
weight of the cupola, together with its superior ring of the drum, is much 
lighter than other smaller domes. The St. Peter dome in Rome together with 
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Fig. 7. Meridian cracks discovered in the Pantheon dome 
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Fig. 8. Loads distribution on the slice 

its drum weights about 40,000 t. From inspection of Fig. 8 we can recognize 
that the weight is strongly concentrated near the springing. This fact has 
important consequences on the statics of the dome. 
Fig. 9 gives the pressure lines corresponding to different locations of the 
starting points at the crown. The minimum thrust line is the curve C3 of the 
figure. This curve, in the segment between the central ring and the springing, 
is funicular only of a part of the weights of the slice. All the weights of 
the more external voussoirs, in fact, intercept the pressure line under the 
springing. 
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Fig. 9. Evaluation of the minimum thrust by statical approach 

The minimum thrust "So", minimum among all the curves contained in
side the thickness of the wall, is tangent at the intrados and at the extrados 
of the dome to imply the presence of a mechanism to support a small move
ment at the springing, consequence of a light increment of the span. For the 
considered slice the minimum thrust has been calculated in 186,22 t. 

This value has been checked by using the kinematical approach. Fig. 8 
shows the mechanism displacement that allows a small enlargement of the 
dome at its springing with arbitrary position of the hingings. With application 
of the work equation, the research of the position of the hingings is pursued 
to obtain the maximum value of the kinematical thrust multiplier. 

With a mean radius of 21,05 + 3,25 m = 24,3 m, the minimum thrust 
for unit length of the mean internal circular ring at the springing is equal to 
186,22X8/ pX2X24,3 = 9,52 t jm, less twice smaller than the minimum thrust 
of the St. Peter dome, equal to about 20 tjm. 

This so reduced thrust is transmitted to the circular drum. The weight 
of the part of the circular wall, that rises higher than the springing, further 
deviates the pressure line deep inside the wall of the rotunda. The eccentric
ity of the resultant of all the forces acting at the basement is very small and 
the compression stresses are very low. 
The cracks that we can see on the external wall of the rotunda, together with 
all the other cracks in the dome, unlikely can be related to the thrust trans
mission from the dome to the drum. They, on the contrary, can be related to 
settlements that probably occurred just after the construction of the monu
ment, when the concrete of the foundation ring was not yet sufficiently stiff. 
The soil where the Pantheon was built at the confluence of two small rivers, 
is alluvium above volcanic sands and settlements due to the soil consolidation 
certainly occurred. The settlements of the 

foundations probably slowly produced cracks in the drum and in the dome, 
some of them still today evident. The settlement mechanism probably pro-
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Fig. 10. Minimum thrust evaluated according to the kinematical approach 
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Fig. 11. The subsequent resultants up to the foundation a long the drum 



www.manaraa.com

Large Structures Behaviour 57 

duced meridian cracks in the dome and in the circular wall activating the 
thrust of the hemispherical dome. Once these settlements finished, the stress 
state of the dome remained constant and stable in the time. 
The choice and distribution of the various aggregates constituting the con
crete, with decreasing density together with the strongly reducing thickness 
of the dome from the springing to the crown, the design of the upper ring of 
the drum over the springing of the dome, the lightening of the dome with the 
lacunarii, were all smart devices to reduce the thrust. The Pantheon dome 
represents the unsurpassed vertex among the construction of masonry domes. 

2.3 A study of the old restoration works of the St. Peter Dome 
by Poleni and Vanvitelli 

The history of the old restoration works At the first half of the eigh
teenth century S. Peter dome presented a wide cracking pattern that caused 
a great deal of comments in the scientific and technical world. Arches, vaults 
and domes were among the most interesting research problems of the struc
tural science of that time and the discussions about the damage suffered 
by the big dome grew among the various Schools. Two different opinions 
contended for the assessment of the effective state of damage and on the 
remedies of restoration. According to the first opinion, supported particu
larly by the so called "three Mathematicians" (6 ) & Boscovich, T. le Seur and 
F. Jacquier, the collapse of the dome was imminent and its restoration, to 
undertake without delay, required important modifications to the architec
ture of the monument. Such a statement was not passed as correct because 
contradicted by facts. The dome, even if heavily damaged, assumed that was 
in fact standing. The other opinion, sustained by G. Poleni, was less dramatic 
and assumed that "the defects" of the dome could be repaired with ease. 
The damage suffered by the monument was surveyed by Vanvitelli between 
the 17 42 and 17 43. The cracks in the dome were considered visible from the 
interior: the extrados of the dome was covered by a layer of lead that was 
not removed. Long meridian cracks crossed all the dome. The continuity of 
the rings was interrupted from the springing up to the lantern. Also one of 
the two iron chains, inserted in the masonry by Della Porta during the con
struction of the dome, was found broken. Fig. 12 sketches the long meridian 
cracking crossing the extrados of the dome: ring cracks on the contrary, were 
absent. The dome was repaired and stregthened by Poleni and Vanvitelli. 

The debate between Poleni and the "three Mathematicians" didn't quiet 
soon. Still today it is not yet completely plain which of the two opinions was 
right. A wide literature has been concerned in this subject, mainly analyzing 
its historical aspects. Aim of this paper is to recover the problem trying to give 
answers to the various questions in the framework of the actual developments 
of the Masonry Structures Mechanics. 

The Vatican dome has an ogival structure with a double calotte stiffened 
by sixteen large ribs. The middle surface of the double calotte can be modelled 
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Fig. 12. Cracking in the St. Peter dome according to L. Vanvitelli 

as spherical ogival dome. The dome was built using a large wooden scaffolding 
based on the drum. All the sixteen ribs were built simultaneously. The two 
calottes were built between the ribs. The scaffolding was taken down only 
after the completion of the double calotte construction. It was the year 1592, 
i.e. twenty eight years after the death of Michelangelo. 
The thickness of the lower calotte is equal to 2,00 mt while of the higher 
calotte is about 1,00 mt. T he ribs have a variable thickness ranging from 
2,00 mt. at the base to 5,00 mt at the crown. The drum is a cylindrical wall 
of 3,00 mt of thickness and with an internal radius of 21,42 mt. T he dome 
was built with bricks and travertino stones, assembled with common lime. 
The weights of the various parts of the dome, according to Poleni and to 
the "three Mathematicians" calculations are: lantern :1.523 tons.; calottes 
and ribs: 18.714 tons.; drum and attic: 17.920 tons.; buttresses: 4.980 tons.; 
basement: 18.695 tons, with a total weight of 61.832 tons. 

The previous Fig. 2 shows a meridian section of an hemispherical linear 
elastic shell loaded by its weight. We can see that the hoop stresses are com
pressive down from the crown but then become tensile and increase rapidly 
in value toward the base. The thrust transmitted by compressed rings is 
gradually balanced by the tensile stresses acting in the lower rings. 

For masonry domes the situation is different . Old masonry constructions 
are made with bricks or stones poorly assembled with mortar. Tensile strength 
is very low and cracking occurs. The hemispherical dome, &'> previously dis
cussed, thus thrusts against its support s. Poleni, in evaluating the state of 
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safety of the cracked dome, was inspired by the Hooke statement of the 
hanging chain and of the corresponding inverted arch.: "ut pendet continuum 
flexile, sic stabil contiguum rigidum inversum" (21 ). From a drawing of the 
cross section of the dome (Fig. 13), Poleni computed the weight of the sliced 
arch, this last obtained subdividing the dome into fifty solid sectors. Each half 
arch was divided in turn into 16 wedges. Then loaded a flexible string with 
32 unequal weights : each weight in proportion to the corresponding wedge 
of the arch. In his computation also the weight of the lantern surmounting 
the eye of the dome, was taken into account. 

Fig. 13. The Poleni analysis of the dome 

The chain hanged from the center of the sections of the sliced arch at the 
join of the dome with the attic. The length of the chain was chosen so that it 
passed through the center of the sections of the ring connecting the lantern 
with the dome. By inverting it will be seen that the shape of the chain does lie 
indeed within the inner and outer surfaces of the arch. Poleni concluded that 
the observe cracking was not critical(22). This statement could also demon
strate that the dome divided into slices was safe and so the complete dome. 
It is worth to point out that Poleni, analyzing the equilibrium of a slice of 
the dome, passed over the analysis of the whole system composed by dome -
buttress - drum. The same ingenious system of the hanging chain should be 
used by Poleni to analyze a lune of the dome connected to the corresponding 
portion of the drum, but without buttresses. In this case Poleni would recog-
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nize that the pressure line was no more contained inside the drum. Such a 
result should have been met for any pressure line contained in the dome. It 
will be shown that admissible equilibrium of the dome was in fact due only to 
the presence of the sixteen buttresses that strongly worked under the thrust 
transmitted by the drum. Smeared diagonal cracks crossed all the buttresses, 
as shown in the Vanvitelli drawings. The "three Mathematicians", on the con
trary, were convinced that the dome was about to fail. With a kinematical 
procedure, they studied in fact the complete dome and pointed out the exis
tence of an unbalance between thrust and resistance. They used the "sliding 
staff'' mechanism (Fig 14). We will show that the "three Mathematicians", 
even grasping the seriousness of the situation more than Poleni carried out 
a wrong calculation. In their analysis, in fact, the whole weight of the dome 
-and not only a part of it -worked as a thrusting force. Poleni and Vanvitelli 
repaired and reinforced the big dome with the insertion of six iron chains 
but the debate remained open.To try to solve this old heated problem, firstly 
it is useful to recall some simple concepts of the limit analysis of masonry 
structures, together with some new results on the minimum thrust state. 

The equilibrium in the dome In the framework of the previous consid
erations let us firstly verify the computations of the "three Mathematicians" 
by analysing, from a kinematical point of view, the complex system 

" A ... . . 
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Fig. 14. The sliding staff mechanism of the "three Mathematicians" 

composed by the dome, the drum and the buttresses. To the same slice of 
Poleni, we will add a portion of the attic, not included in the Poleni analysis 
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and the drum and the buttress. Calculation are made on the same lune of 
Poleni equal to 1/50 of the dome corresponding to an angle of 7° ,20. 
The mechanism assumed by the "three Mathematicians", as reported by the 
same Poleni, is represented in Fig. 15. The buttress is completely separated 
from the drum. The different assumption of the buttress integral with the 
drum is, in fact, not realistic. The contribution of the buttress is due to the 
raising of its weight during the mechanism deformation of the dome. The 
intermediate "hinge" is localized very low, near the connection of the dome 
with the attic. This mechanism is poorly efficient because all the central part 
of the dome, with the lantern, meets low sagging. 

The calculation of the work made by the resisting and of the pushing forces 
is carried out with reference to the kinematical chain of Fig. 15, indicated 
as (M). In the same figure the kinematical chain corresponding to the other 
mechanism, indicated as (A) is reported. 

Poleni analysis represents an early application of the statical theorem. 
Unfortunately Poleni considered only an incomplete portion of the complex 
system composed by dome - drum - buttress. 
To improve this analysis, let us evaluate the minimum thrust transmitted 
by the buttresses to the drum. In this case we can obtain a safe state of 
stress of the whole complex system. The slice of the dome with the drum is 
thus in mechanism state involving outwards displacements of the buttress. 
The position of the intermediate hinge is unknown in this mechanism. The 
corresponding thrust can be thus obtained as a maximum among the all the 
kinetically admissible thrusts, defined by eqs. (14). We can operate consider
ing the same mechanisms (A) and (M). 

The six iron chains inserted in the dome by Poleni and Vanvitelli, con
siderably increased the safety level of the monument. After these restoration 
works no more signs of serious statical degradation of the dome occurred. 

2.4 The Colosseum 

Roman's greatest amphitheatre, commissioned by the Emperor Vespasiano 
in AD 72 on the marshy site of a lake, in the grounds of Nerone palace, the 
Domus Aurea, was built to a practical design, with its 80 arched entrances, 
allowing easy access to 55,000 spectators. The superimposed building has an 
elliptical plan with a perimeter of 577 m and an height of 48,5 m. 

Outside the monument presents a threshold order of superimposed arcades 
and a superior cornice, the attica. The external structure, in fact, is composed 
by three ring walls connected, at the various levels, by the ambulatory vaultes. 
The outer ring was built in four rows, the first three had 80 arches each 
and the last one, the above mentioned cornice rectangular windows. Radial 
masonry walls, located transversally, in prosecution of the pilasters of the 
ambulatory vaultes, are the support of the cavea. Fig. 18 gives a sketch of 
the outer wall. 
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Fig.15. Mechanisms (A) and (M) 

The foundation is constituted by a large and massive continuous ring of 
concrete whose width measures more than 50 m and with a thickness of about 
10m. 

The structures present different masonry composition. Fig.21 shows the 
composition of the three external ring walls. A peculiar aspect of the Statics 
of the monument is the presence of circumferential compression due to the 
external arches. These arches, in fact, induce horizontal thrust with radial 
external component to each pier. This thrust is added to the thrust produced 
by the ambulatory vaults. The pier are gradually corbelled from the base to 
the top. In this way the eccentricity of the vertical load is reduced in the 
piers. 

The arch behaviour of the vaults is sketched in Fig.22. The ambulatory 
vaults, above the internal corridors, transmit loads to the peripheral arches. 
These arches, in turn, transmit to the pilasters the thrusts due to the weight 
of the arch and to the actions exerted by the ambulatory 

vaults.(Thrust Band C of Fig.22). Due to the curvature of the ring walls, 
the thrust transmitted to the pilaster by the two adjacent peripherical arches 
have a radial component (Forces D and E of Fig.22). The Colosseo exhibits a 
large strength. Outside rotation of parts of the external wall is not allowed. 
Mechanisms that involve radial opposing displacements of the wall are incon
sistent. The outside rotation of a portion of the outer ring, sliding against 
the adjacent wall, is not allowed because the fric tion strength explicated by 
the masonry circumferentially compressed. 
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Fig. 16. The six iron chains inserted in the dome by Vanvitelli 

Because of the particular shape of the cross section (Fig.20) , only a global 
external rotation of the whole ring wall, involving only the outer and the 
intermediate ring , can occur. (Fig.23). 

Under the action of the vertical loads acting along the internal corridors 
upon the ambulatory vaults, the whole structure can open involving a ra
dial outside mechanism. Along this mechanism vertical loads acting upon 
the ambulatory vaults perform active positive work while the resisting work 
is dominantly made by the lifting of the weight of the walls outside rotat
ing.(Fig.23). A calculation of the various active and resisting works gives for 
the collapse multiplier of the load acting upon all the circumferential vaults 
at the four levels the value of 1,14 7 t/mq. In this calculation the crushing of 
the base of the columns due to the particular round shape of the base section 
has been allowed. 
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Fig. 17. A plastic model of the Colusseum in its original form 
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Fig. 18. The outer ring wall 
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Fig. 19. A plan of the Colusseum 
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F ig. 20. The section of the Colusseum 
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Fig. 21. The different composition of the ring walls 

(II) 

Fig. 22. Arch behaviour of the circumpherential vaults 

The behaviour of the structure of the Colosseum is similar to that of a 
masonry dome which collapses under the action of central loads - for instance, 
the weight of the lantern - contrasted by the lifting of the weight of the lower 
annular bands.(Fig.25). Fig.26 and 27 show other considered mechanisms to 
which correspond higher values of the load multipliers. 

3 Deformability and aerodynamic stability of long 
span bridges 

Cable supported bridges have been of great interest in recent years, particu
larly with respect to the fan-shaped cable stayed scheme and the suspension 
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Fig. 23. A semiglobal mechanism involving the outside rotation of the outer wall 
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Fig. 24. The round shape of the base of the external pilasters 

one for long spans. 
For long-span bridges one of the most important problems is related to the 
deformability under live loads. In the case of bridges carrying both road and 
railway traffic, and for spans greater than 1000 m, this aspect can seriously 
influence the design and the feasibility of the structure. In addition, increas
ing the span length, the aerodynamic behaviour of the bridge becomes the 
feasibility key problem. 
Como et al. [12] analyzed the static behaviour of long span cable stayed 
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Fig. 25. An analogy between the collapse mechanism of t he hemisperical dome and 
Colosseum 

Fig. 26. The first global mechanism 
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Fig. 27. The second global mechanism 

bridges showing the prevailing truss behaviour of the bridge. Bruno and 
Grimaldi [13] investigated the nonlinear static behaviour of cable-stayed bridges 
using both a continuous and a discrete model of the bridge, and showed the 
strong influence of nonlinearities for long spans. Moreover, the dynamic be
haviour of cable-stayed bridges has been investigated by Bruno [14] who 
analyzed the effects of moving loads, and by Bruno and Leonardi [15] who 
analyzed aerodynamic instability problems. 
In above studies the fan-shaped cable-stayed bridges was studied using both 
a continuous and a discrete model of the bridge, and the dominant truss be
haviour of the bridge was found. In particular, the influence of the dynamic 
properties and geometric nonlinearities of the structure are included in the 
analysis. 
The main aspects related to aerodynamic stability of cable stayed and sus
pension bridges are discussed by M. Como [16] . 
Recently, many projects with central span exceeding largely the longest exist
ing suspension and cable stayed bridges have been proposed. Studies of new 
bridges propose central spans larger than 3500 mt for suspension solutions, 
and 1500 mt for cable stayed solutions. The main technical aspects limiting 
the effective feasibility of so long bridges are strictly related to their deforma
bility and aerodynamic stability. 
In the next simple qualitative evaluations of the feasibility of extreme span ca-
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ble supported bridges are given by using continuous models of the bridges and 
comparisons with more refined numerical models. Simple analytical results 
focus the more relevant technical parameters that influence the behaviour of 
the bridge and the feasibility limitations. 
It is shown that more than the static deformability, the aerodynamic behav
iour is the relevant technical limit to the increasing of the span length. 
Finally, some applications and examples of long span bridges are given. In 
particular, the geometric aspect ratio Lc/H between the main span length 
and the tower height, the loads ratio pjg between live and dead loads, the 
relative flexural stiffness between girder and cables, are taken into account. 
In conclusion the qualitative results of the models show that the geometrical 
parameters and the dead load value and distribution, are the main factors 
that determine the behaviour and the feasibility of super long cable supported 
bridges. 

3.1 Bridge models and deformability analysis. 

At first the fan shaped cable stayed bridge scheme is examined. We refer to 
the scheme of Fig.28 in which the girder is simply supported at its ends and 
is hung to the tops of H-shaped towers by means of two stays curtains. 
It is assumed that the stays spacing L1 is a small quantity compared to the 
central span length Lc. 
The aspect ratios r1 =Lc/H; r2=L8 /H of span lengths to the tower height are 
usually obtained on the basis of economic considerations and of the anchor 
cable stability condition. 
The longitudinal vertical plane y,z is assumed to be a symmetrical one; in 
addition, the bridge is also symmetrical with respect to the midspan cross 
plane. 
According to the usual erection procedures, girder and towers are assumed 
to be free from bending under dead load g. Then, the cross sectional areas A 
and A0 of the couple of diffused stays and of the anchor stays, respectively, 
are obtained by referring to the truss scheme of the bridge. 
We assume that towers and girder's axial elongations are negligible, and we 
apply the beam model for bending and torsion of the girder. 
As far as the stays behaviour is concerned, the Dischinger modulus Es *=E/(1 +y2 
l0 2E/12a}) is used, where E is the Young modulus, 1 is the specific weight, 10 is 
the horizontal projection length of the stay and a a is the initial tension. The 
tower is characterized by the flexural stiffness k and the torsional stiffness kt, 
while the girder is characterized by the inertia I and the torsional stiffness 
factor Ct. It is convenient to introduce the following non dimensional quan
tities which represent the main parameters governing the bridge behaviour 
[12,13]: 
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E= T= (2) 

that is: 
-the parameter a which accounts for the Dischinger effect of stays; 

-the girder relative flexural stiffness parameter E; 
-the girder relative torsional stiffness parameters T; 
-the ratio E/O"a between the elastic modulus and the allowable stress of the 
material stays; 
-the ratio P between live load and dead load g, 

where O" 9 = O" a/ (1 + P }, O" a being the allowable stress. 

H 

* 
I 2c I 

I I 

Fig. 28. Cable stayed bridge scheme 

It can be observed that for given material stays and load ratio P, the 
parameter a can assume the meaning of bridge span parameter. 
It is possible to show [12,13] that the statical behaviour of the bridge can be 
studied by using a continuous structural model which gives the main bridge 
deformation and stress parameters. 
In Fig.30 some results relative to the deformation of the cable-stayed bridge 
scheme are given, where both an analytical continuous model and a FEM 
discrete one of the bridge are employed. 
The results refers the following geometrical and material parameters of the 
bridge: r1 =2 .5; r 2 =5/3; E/O"a=2.1x106 /7200; k/g =50. 
In this figure the case of high live loads (P=p/g=l}, as in railway bridges, 
is considered. It can be observed that the transverse deflection of the bridge 
is practically unaffected by the tower shape, on the contrary, the torsional 
deformation is strongly influenced by the tower shape. The results are given 
in dimensionless form, where the quantity flo represents the nondimensional 
torsional couple m: flo =HO" 9 m/Egb2 . 

We consider now the suspension bridge scheme depicted in Fig. 29. The mean
ing of symbols is the same of that used for the cable stayed bridge scheme 
previously described. 
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It can be shown that for this scheme the following main parameters can 
be assumed 

gL3 
K c. 

v = EI ' 
K ~ 2gLcb2 . 

t ~ Ct ' 
E 

(3) 

that is: 
-the ratio between the shape flexural stiffness of the main cable and that 

of the girder; 
-the ratio between the shape torsional stiffness of the main cable and that 

of the girder; 
-the ratio P between live load p and dead load g; 
-the ratio E/ u 9 between the elastic modulus and t he initial tension of the 

main cable. 

It, Ct 

y 

Fig. 29. Suspension bridge scheme 

Also in this case it is assumed that the hangers spacing L1 is a small 
quantity compared to the central span length Lc. The aspect ratio f/ Lc of 
cable sag to the central span length is substantially related to static and 
economic considerations which lead to the mean value f/ Lc = 0.1, while the 
aspect ratio Ls / Lc of latera l span length to the central span length is usually 
related to aesthetic and environmental requirement s. In our applications the 
values f/Lc = 0.1; Ls/Lc = 0. 25 will be used. T he bridge is assumed to 
be symmetric with respect to the longitudinal vert ical plane y,z and with 
respect to the midspan cross plane. Also in this case girder and towers are 
assumed to be free from bending under dead load g. Moreover, a diffused 
arrangement of hangers along the deck is assumed, which enables to develop 
a continuous model of the bridge leading to appropriate analytical solutions. 

In Fig 31,32 some results relative to bridge deformation are given , where 
both an analytical continuous model and a FEM discrete one of t he bridge 
are employed.The results refer to t he following geometrical and material pa
rameters of t he bridge: f/ L, = 0.1; L;, / L,= O. 25; E/ u =2.1x10r; / 5000. 
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In these figures a parametric analysis of the bridge flexural and torsional 
deformation is developed as a function of the relative flexural and torsional 
stiffness parameters for several values of load ratio p = p/g (m = m / 2gb) . 
In particular, as far as the flexural deformation analysis is concerned the live 
load p acting on the right (or left) half central span is considered to give the 
maximum transverse deflection 8 of the bridge, while a uniform torsional cou
ple m acting on the whole central span is considered to obtain the maximum 
midspan torsional rotation cp. From these figures emerges that, contrarily to 
that found for short spans, the influence of the relative stiffness parameters 
Kv and Kt on the nondimensional deformations of the bridge V = 8 / Lc and 
<I> = cp b/Lc is practically negligible and the overall stiffness of the bridge can 
be attributed to that of the main cable only. In addition, it can be observed 
that the deformations are almost linear with respect to the load parameter 
p = p/g with a strong influence of this parameter on the deformability of the 
bridge. 

MIDSPAN VERTICAL DEFLECTIO S MIDSPAN TORSIONAL ROTATION 0 

P erT! I I I I 4! i J. 

-~- •o' • ~lc. .. 
.. 

" 
I " 

D 
_,_, 
........... • ~ 

a a ... .. ... .:,. . ... 

Fig. 30. Cable stayed bridge scheme Statical analysis: Flexural and Torsional de
formations 
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Fig. 31. Cable stayed bridge scheme Statical analysis: Flexural deformation 
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Fig. 32. Cable stayed bridge scheme Stat ical analysis: Torsional deformations 

3.2 Aerodynamic stability 

As well known among the numerous problems involving the behaviour of 
long span bridges, aerodynamic instability is the most complex and relevant 
one because of his strong influence on the feasibility aspects. In particular, 
the flutter instability can represent the more dangerous phenomenon in long 
spans. To study this phenomenon the dynamic properties of the bridge are 
needed to know, like that free osci llations in still air. In particular, the ratio ¢ 
= T v / T 1.1 between vertical and torsional natural periods is the key parameter 
with respect to flutter instability. 
We now discuss about free vibrations of the fan shaped cable stayed bridge 
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scheme of Fig. 28. In the case of long span bridges, the tower stiffness can 
be neglected with respect to that of the anchor stays; this implies that the 
first antisymmetric oscillation degenerates into a rigid transition of the girder, 
while the fundamental period of the symmetrical vertical oscillations is almost 
equal to the second period of antisymmetric oscillation {16-17}. In particular, 
the fundamental period of the symmetrical vertical oscillations can be put in 
the following form {16-17}: 

( Jl~c) ~ ( 1 + ~) ~ f ( :~,, ~ , a, ~) (4) 

where 11 is the unit length mass of the girder. 
Moreover, the fundamental period of the torsional oscillations can also be 
put in the form: 

(5) 

where I0 , is the polar moment of inertia of the cross section of the girder. 
From above results it is now possible to evaluate the ratio ¢=Tv /T e between 
the fundamental periods of vertical and torsional oscillations, i.e. 

(6) 

The same result is obtained in the case of the suspension bridge scheme. 
In fact, with reference to Fig.33 where the fundamental the symmetric and 
antisymmetric vertical oscillations are sketched, it is possible to evaluate the 
fundamental period of the antisymmetric vertical oscillations involved in the 
flutter analysis {16}: 

( Jl:c~) ~ _1_+_4-:-::-2 --;H~,.-;i-2 ~ ( Jl~c) ~ ( ~) ~ (7) 

While the fundamental period of the torsional oscillations is given by 

(8) 
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where He = 2{f is the axial force in the cable index dead load g. 
Hence, for the suspension bridge scheme, the parameter ¢ is given by: 

¢ = ~:: = c;:) ~ (9) 

which is the same of that previously found for the cable stayed bridge 
scheme. 

JS1 Symmetric mode 

JS1 Antisymmetric mode 

Fig. 33. Suspension bridge scheme: free oscillations 

The coupled flutter velocity of the wind, both for suspension and cables 
stayed bridges is given by 

(10) 
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where 

(11) 

are mass distribution coefficients of the bridge, p is the ordinary air den
sity, c is the semi-width of the girder, f..L is the unit length mass of the girder, 
comprehensive of the main cables and girder mass, Io = IaGinder + f..Lcabl b2 is 
the total polar moment of inertia, comprehensive of the inertia of the girder 
and of the cables, A3 * is the aerodynamical torsional stiffness of the bridge, 
appropriate function of the reduced frequency 

k= cw 
v (12) 

(c is the critical reduced frequency, i.e. the smallest solution of the critical 
equation 

(13) 

with H1 * and A2* aerodynamical vertical and torsional damping coeffi
cients. For long span bridges the main flutter parameter is the ratio 

cp = 'Wo() = Tav 

'Wov Tao 
(14) 

between torsional and vertical frequencies of the considered oscillation 
mode. In fact the critical reduced frequency (c, is such that 

(15) 

The flutter wind speed goes to zero when the ratio ¢--+1 For superlong 
spans the ratio ¢ takes approximately the form 

1 + Mgird 

¢ == I-Lcabl 

1 + Iogird b2 
J.Lcabl 

(16) 

and, with the traditional planning of the bridge, fatally goes near to the 
unity. In this case an help comes out if we can realize higher values of the 
ratio f..Lgird/ f..Lcabl· Lighter cables made with CFRP materials, can be in this 
case very convenient. 
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Fig. 34. Critical wind speed V c versus flutter parameter P 
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Abstract. The splitting of functional into two convex functions provides a specific 
algorithm to determine the local minima. This approach is applied to two mechani
cal problems with non convex potentials: the modeling of shape memory alloys and 
the buckling of thin beams. 

1 Introduction 

In non linear mechanics, the equilibrium states minimize the potential energy 
which is not necessary convex. Consequently solve such a mechanical problem 
consists in finding the local minima of the potential energy. The functions 
which may be written as the difference of two convex functions constitute a 
first set of non convex functions. Some properties associated with the con
vexity may be used in order to formulate some extremality characterizations 
[9] and to define appropriate solution algorithms. Such an approach is not 
very easy to handle in infinite spaces because the convexity is a power tool to 
get compactness theorems in such a way to prove existence of solutions of a 
minimization problems. Then the numerical results presented in the follow
ing have to be considered with caution; they may depend on the mesh and 
not necessary converge towards a continuous solution when the discretisa
tion step tends to zero. But we have to try new algorithms to reach possible 
equilibrium states in non linear mechanics often characterized by instability; 
these possible solutions have to be discussed from a mechanical point of view 
a posteriori; these paper dedicated to two applications is a first attempt in 
this way. 

2 CD formulation and CD algorithm 

Let consider a boundary problem on an open domain f? of the space. The 
potential energy II associated with this mechanical problem is written, 

JI(v) = P1(v)- (<1>2 o D)(v), (1) 

where <1>1 (v) = l ¢1 (v, Vv) dx- l(v), <P2 (Dv) = l ¢2 (Dv) dx and Dis a 

linear partial differential operator. 
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A critical point u of the potential energy II is defined by, 

0 E 8II(u) = cN>1(u)- o(<h o D)(u). (2) 

where [) denotes the generalized gradient introduced by Clarke [2] for the 
locally Lipschitz functions and 8 denotes the subdifferential of a convex func
tion. Since <P 1 is a strictly differentiable function [2] the set equality in Eq. 2 
holds and the previous inclusion is equivalent to , 

8(<P2 o D)(u) n 8<1> 1 (u) i- 0. 

Among the critical points, a local minimum u satisfies, 

(3) 

But this relation characterizes a local minimum only if <P2 o D is a piece
wise affine function [4,5]. This last property is not true in general for the 
continuum problem but can be verified in finite dimensional cases, i.e. after 
finite element approximation. This decomposition leads to define a type II 
Lagrangian [1,5,9] depending on two fields , 

(4) 

where the density ¢2(v,T2) = supe {e: T2- ¢2(e)} is the classical Fenchel 
conjugate function. Thi8 Lagrangian is 8eparately convex in each of the dual 
variables , but the convexity of Lrr is not guaranteed in general; a very simple 
example is illustrated in the Fig. 1. Consequently a min-min problem is nat
urally related to this Lagrangian who8e the arguments are called 8-critical 
points (cf. Table 2). 
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CD Algorithm 

• Initialization of the algorithm with ( u0 , ug), 
• with (un-I,u~- 1 ) known, we have to determine 

un, u?] as follows, 

step 1 : un · 1 ( n-1) arg mm rr . , u 2 

step 2 : E argminLrr(un, .) 

Since Dis a partial differentiable operator, by duality the field r 2 belongs to a 
less regular space than u. Then the second minimization, involving eventually 
a non differentiable ¢2 function, may be performed locally, i.e. in each finite 
element for instance. On the contrary, the first minimization always stays 
global on the structure and may take advantage to be quadratic in order 
to restrict this step to a linear solution. This situation (global but linear 
first step / non linear but local second step) compares the CD algorithm to 
augmented Lagrangian techniques based on this splitting. 

3 Two applications 

3.1 A set of models for Shape Memory Alloys (SMA) 

In the first example we use the model of Shape Memory Alloys (SMA) given 
in [3,5, 7] in an isothermal case. To do this, let us consider a decomposition 
into the difference between two convex functions <Jh and P2g of the potential 
energy II associated with the mechanical problem, 

II(v) = <!>1 (v)- (<P2g o e)(v), (5) 

where <P 1 (v) = L ¢ 1(e(v)) dx -l(v) and <P2g(e) = L ¢2g(e) dx. According 

to the temperature range ( c = c(T)) we have two behaviours; a pseudo-elastic 
behaviour with five regimes and a quasi-plastic one with three regimes, 
if c + ~ > 0, 

if c + % ::; 0, 

-aT: e- c 

2J (aT : e + c + ~) 2 

0 

2J (aT : e - c - ~) 2 

aT: e- c 

{
-aT: e- c 

¢29 (e) = 2J (aT : e) 2 - c - ~ 
aT: e- c 

if aT : e ::; - c + ~ 
if iar : e + ci ::; -~ 

if air : ei ::; c + ~ 
if iar : e- ci ::; -~ 

if ar: e ~ c- ~ 

if ar: e::; Q 

if air : ei ::; -9 
if ar: e ~ -Q 

(6) 

(7) 
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where l(v) is the work of the external loading, o:, r, care thermo-mechanical 
constants, e is the small strain tensor and Q is a parameter characterizing 
the scale the phase transition is modelized (Q = 0 for the microscopic scale 
and Q = 9c for a macroscopic scale [5,6]). This decomposition leads us quite 
naturally to introduce a type II Lagrangian which depends on the displace
ment field u and on the "stress" phase transformation field u 2 ; in that case 
<P;9 is easy to compute and is given in [5,7]. The CD algorithm may catch the 
local minima and so reproduce hysteretic processes and phase propagations 
[6] (an augmented Lagrangian technique finds a global minimum which is 
more homogeneous). 

3.2 Buckling of rods by the Elastica theory 

We are interested to modelize the buckling of flexible and inextensible rods. 
It is well known that a force applied to the ends of the rod and oriented 
according to the rod may lead to different equilibrium states if the magnitude 
of the force is large enough. The critical values and buckling modes around the 
trivial solution may be obtained by a stability theory using a linear modeling 
of the rod; but the deformed shape may be reached only by a non linear 
modeling. Moreover the possible buckling shapes, if unilateral conditions have 
to be considered (cf. Fig. 5), are an open problem (cf. [8]). The existence of 
local minima in buckling problems constitutes a motivation to try a CD 
approach. In a first approach we use the Elastica theory where a single scalar 
field 8 must be found. We have to minimize the following potential where P 
is an horizontal force, 8 the angle between the deformed rods and horizontal 
axe, E the young modulus and I the inertial momentum. We remark that 
the non quadratic part is due to the work of the external force since the bulk 
energy is still a quadratic form, 

1c EI ,2 
inf - (J - P cos(] dx, 
e 0 2 

p < 0. (8) 

We postulate the following CD splitting by introducing a parameter /3, 

(h(e) = ~I e'2 _ 13 P e;, (9a) 

¢2 ( (J) = - p (j3 (J: - cos (J) . (9b) 

The first energy density is convex if j3 :;:: 0 because P < 0 and the second 
one is convex if j3 2: 1 for all (J. By restricting 8 to the interval ].!f, lf [ -
which may be relevant in some cases - the convexity holds for j3 non negative. 
The previous decomposition gives an optimal CD algorithm in the following 
meaning : the first minimization consists of a linear global problem since 
the second one is local and consists only in deriving ¢ 2 to update the u 2 

multiplier. The two numerical examples show the ability of the CD algorithm 
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to reach equilibrium states if they are local minima of the potential. But only 
a first mode is obtained (even if the load permits others modes). In the first 

case ( cf. Fig. 2 and Table 1) the first critical value is equal to IT4~Ifjl :::::: 25 and 
the buckling may be recovered only for (3 equal to 0. For P less than 50, the 
solution satisfies the condition () E ] If, If [and the CD algorithm converges 
for (3 non negative. On the contrary, for P bigger than 50 it is necessary to 
choose (3 2': 1. The convexity assumption for ¢2 is therefore essential. But 
the parameter (3 has not to be too big otherwise the convergence rate slows 
down. 

p 

Fig. 2. The first buckling test and some deformed shapes (two elements) 

The second example is quite different : a kinet ic condition is imposed at 
the end of the beam ( cf. Fig. 3) in such a way the first buckling mode may 
occur for P equal to II;tJI :::::: 100. With the Elastica theory this condition is 
satisfied implicitly by imposing the slope at the end opposite to the slope at 
the origin. This fact is a severe limit to use Elast ica theory in more complex 
boundary problems. However the conclusions of the parametric study on (3 
and P are the same than the previous case as illustrat ed in the Table 1 and 
in Fig. 3. 

10 

-2 

Fig. 3. The second buckling test and some deformed shapes (ten elements) 
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Table 1. Number of iteration for the CD algorithm. * : No buckling 

p Example 1 Example 2 

(3 26 30 40 50 75 100 105 120 150 200 300 

0 1053 30 9 19 00 00 104 34 14 36 00 

0.25 * 41 14 9 25 00 133 46 32 13 45 

1 * 71 31 23 16 13 219 81 42 28 22 

2 * 111 54 41 32 30 334 129 72 51 41 

4 CD algorithm and coupling 

It may be interesting to compare a non convex optimization problem whose 
the objective function may be splitted into the difference of convex functions 
and a convex optimization problem with constraints ( cf. Table 2). Indeed the 
two formulations underline a part of the objective function as a convex pertur
bation which is either added or subtracted. Moreover this perturbation may 
often involve a linear operator by composition. Consequently a Lagrangian 
approach leads to similar problems, the first as a Inf Sup problem and the 
other as a Inf Inf problem. The arguments of such problems are either saddle 
points or a-critical points according to the definition of Auchmuty [1]. The 
algorithms associated with these formulations (Uzawa algorithm and CD al
gorithm) consist of two steps: the first step is a classical minimization problem 
according to the primal variable, the second one is either an updating of the 
Lagrange multipliers or a minimization problem according to the multipliers. 
A last common point concerns the formulation of the critical points of the 
augmented Lagrangian of a convex constrained problem and of critical points 
of the initial CD function; but this fact is out of our purpose here. 

Such a analysis leads to consider a set of algorithms to solve the problems 
which couples a CD formulation with convex constraints, by combining the 
previous CD and Uzawa algorithms. The following example concerns the 
buckling of rods submitted to unilateral contact conditions. A previous study 
about coupling sleeves using SMA structure with contact was based on a 
similar approach. We consider a rod submitted to a concentrated force at 
the end and an obstacle. A distance e separates the obstacle from the initial 
configuration of the rod. To account for the eventual contact of the rod with 
the obstacle, concentrated reactions are introduced at the nodes of the finite 
elements. The problem consists then in minimizing the new functional in (10) 
under the constraints (11) which are written as complementarity conditions 
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on the gap hi(B) at each node and the contact reaction Ri· 

i~f ((~I 8'2 -P cosB)dx + f: ri Ri sinBdx, (10) 
~ •=l~ 

hi(()) = e - 1xi sin8dx ~ 0; Ri ::=; 0; hi(B)Ri = 0. (11) 

The CD splitting has to be completed as follows with the same conditions 
for /3i, i = 1, .. , n as for (3, 

(12) 

where Xi is the abscisse of the ith node and X[O,x;J is the characteristic function 
of the interval [0, xi]. The coupled algorithm consists then of overlapped loops, 
the Uzawa loop containing the CD algorithm as summarized in Fig. 4. 

Uzawa loop 

[ 

CD loop 

) en = argminLrr(.,u~- 1 ) 

i) u2 E argminLrr(un, .) 

Ri t-- min(Ri + phi(B); 0) 

p ·-
Fig. 4. Coupled Uzawa-CD algorithm and discrete nodal contact reactions R i 

The figure 5 shows three situations for different positions of the obstacle. 
For the lowest position no contact occurs and the low mode of buckling is 
obtained. For an higher posit ion contact occurs only at the end of the rod 
and for the highest position the algorithm converges to the upper fundamen
tal mode of buckling without contact because the solution with contact is 
unstable. The numerical experiments show that such an algorithm is unsta
ble (because the process is unstable too). Moreover the contact treatment is 
not easy to handle in the context of the Elastica t heory which is essentially 
dedicated to situations with concentrated forces. An other approach is per
formed today based on the modeling of inextensible rods by the bidimensional 
displacement field and a non convex constraint imposing the inextensibility 
condition. 
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Fig. 5. A buckling test with contact and some deformed shapes (six elements) 

Table 2. Comparison between a non convex problem and a convex problem with 
constraints. N is the trace operator on the contact boundary rc, c + is the admis
sible displacements convex set and c- is the polar cone set for the mult iplier 

Non smooth convex problem (contact), 
infv <Pl(v) + Ic+(Nv). 

Non convex problem (SMA), 
infv(loc) <Pl(v ) - <P2(Dv) 

Lagrangian, Type II Lagrangian, 
L(v,/) = <P1 (v)- Ic- (!)+ < Nv,/ > . Lrr(v, r2) = <P1 (v) + <P~(r2)- < Dv, T2 > 

Saddle point of L, 
infv sup"Y L(v, 1) 

Uzawa algorithm, 
i) u k+l = argminL(.,Ak), 
ii) Ak+ 1 E argmin-L(uk+1 ,.) 

References 

Critical point of Lrr, 
infv inf.,.2 Ln ( v , T2) 

CD algorit hm, 
i) u k+ 1 = argminLrr( . ,u~) , 
ii) u;+I E argminLrr(uk+l, .) 
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Abstract. The gluing technique is a promising assembling method in Civil En
gineering, since it opens new horizons in the design of complex concrete or steel 
structures. However, at the present time, several breaks are slowing down its indus
trial development: 

• it is a delicate technique which requires a qualified staff in order to respect 
basic rules of implementation, 

• recurrent interrogations concerning the long-term durability of adhesively bonded 
joints are still not answered. 

A physical-chemical approach of the problem may provide elements of solution. The 
first part of this article propose some rules of implementation derived from physical
chemical considerations, which are necessary to ensure safety of the adhesive bond. 
In the second part, experimental results are presented, giving an improved descrip
tion of the microstructure of bonded joints. These results illustrate the interest of 
a physical-chemical study for the identification of parameters susceptible to govern 
mechanical strength and durability of the adhesive bond. 

Keywords: Civil engineering; gluing; adhesive bond; joint; implemen
tation; time of reticulation in place; durability; epoxy resins; concrete; steel; 
micro-thermal analysis; interfacial areas; mechanical modelling. 

1 Introduction 

Gluing is a well-known assembling technique which is used in many fields 
of human activity but is still not considered as reliable by the specialists of 
building technology. New arguments may be put forward from a physical
chemical approach to launch the debate and try to rehabilitate the gluing 
technique in construction, especially for applications such as assembling of 
steel or concrete structures. 
The main reasons why civil engineers or architects are reserved for the use 
of adhesive bonding are identified: 



www.manaraa.com

92 K. Benzarti, Y. Mouton, T. Chaussadent 

• the lack of knowledge concerning the durability of glued assemblies (re
sistance to vibrations and fatigue, influence of a permanent stress level, 
environmental effects, etc .. ); 

• problems of interfacial strength related to the poor mechanical properties 
of the concrete surface; 

• the difficulty to perform an efficient control of the polymer joint by using 
non destructive tests; 

• the complexity and the cost of a repair in case of damaged joint, etc. 

Moreover, the design of adhesively bonded joints is generally achieved by 
means of a mechanical modelling. Such models are unable to take into ac
count the chemical behaviour of polymer adhesives during implementation 
or the evolution of the physical-chemical properties with time. However, it is 
commonly admitted that such parameters play a determinant role towards 
the bond durability. 
The purpose of this paper is not to solve all these problems, since no simple 
solutions are available. The aim is rather to argue in favour of a physical
chemical approach, complementary to the mechanical modelling, which may 
help engineers to design durable glued structures in the near future. 
The first part of this article gives a general outline of the parameters govern
ing quality of the adhesively bonded joint. Basic rules of gluing implemen
tation required to obtain a good durability of the bond are reported, and a 
special attention is paid to the assembling of concrete structures. 
In the second part, results of an experimental study are presented, providing 
a fine description of the microstructure at the adhesive/substratum interface. 
This section illustrates how a physical-chemical approach can contribute to 
the understanding of interfacial phenomena that may affect durability and 
mechanical properties of glued assemblies. 

2 General points about adhesive bonding 

2.1 Implementation of the gluing technique 

From the macroscopic point of view, bonding can be considered as effective 
when the surfaces in contact are totally covered by the polymer adhesive and 
when this adhesive has reached its final physical-chemical equilibrium (i.e. 
after cooling, chemical reticulation, etc .. ). These conditions require a good 
wetting of the surfaces by the adhesive and a controlled evolution of the 
polymer towards its equilibrium state. 

Surface treatments and wetting dynamics Gluing two materials to
gether is an easy task if the surfaces are sound, well cleaned and accessible, 
and if the polymer adhesive is well formulated. 
In a concrete substratum, the external surface is mainly constituted of cement 
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paste and includes only few aggregates. This surface layer shows poor cohe
sion with the inner material and exhibits low mechanical properties. For that 
reason and before any coat of glue, the concrete surface is generally cleaned 
by sand blasting in order to remove the weak layers and create microscopic 
roughness. The concrete surface can also be treated by a primer (in general 
an extremely fluid epoxy resin) in order to fill up the porosity and increase 
the cohesion. Another way of solving the problem is to use high or very high 
performance concrete with enhanced mechanical properties. 
For metallic materials, specific treatments are necessary to remove weak lay
ers of oxides, to prevent subsequent corrosion and enhance adhesion. This 
is generally performed by sanding surfaces, by use of chemical treatments 
(acidic solutions, galvanisation . . . ) and sometimes by coating the metallic 
surface with adhesion promoters ( organosilanes). 

When the substratum is coated with the glue, a physical parameter char
acteristic of the gluing efficiency is the wetting ability of the surface (adher
ent) by the adhesive. This parameter takes into account: 

• the level of physical interactions between adhesive and adherent, which 
depends on the relative surface energies; 

• the dynamic viscosity of the adhesive; 
• the spreading ability of the adhesive on the adherent; 
• the roughness of the adherent. 

A good wetting of the substratum is required in order to get an intimate 
contact between adherent and adhesive. Considering a concrete substratum 
and usual polymer adhesives, this condition is generally achieved if concrete 
surfaces are dry and well cleaned. However, this is not sufficient since the 
liquid adhesive must also be able to evolve towards its equilibrium solid state. 

Conditions of cure Adhesives used in construction are mainly hi-component 
thermosetting systems, such as epoxy formulations. When the resin and the 
hardener have been mixed, chemical reactions (polymerization or cure) in
duce a progressive evolution of the polymer from a liquid glue towards a 
solid macromolecular network. Conditions of cure, especially temperature 
and time, govern this structural evolution and therefore control the proper
ties of the resulting material. 
First, temperature has an influence on the viscosity of the liquid glue. At 
low temperature (for instance in winter), the glue becomes too thick and 
the kinetics of polymerization is considerably slowed down, therefore imple
mentation is not possible. The range of temperatures compatible with a good 
implementation is usually specified for each adhesive and should be respected. 
Then, at a given temperature (which is generally the ambient temperature), 
the viscosity increases with time as the macromolecular network builds-up. 
When the viscosity reaches a critical value, the glue can not be worked any 
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more and implementation becomes impossible. For this reason, a Usual Prac
tice Time (UPT) is defined as the time while a polymer mix (resin + hard
ener) can be worked at a given temperature [1]. Operators should take care 
of the UPT during implementation. 
After solidification of the adhesive, the mechanical properties continue to 
increase slowly with a temperature dependent kinetics. Usual epoxy resins 
(cured with aliphatic amine hardeners) require 12 days curing at ambient 
temperature (10-25°C) in order to reach an equilibrium state with quasi
stable mechanical properties. This observation leads to the notion of Time 
of Reticulation in Place (TRP) [2] which is the necessary period for a two
components mix to chemically react and give a solid material with specified 
mechanical performances. For example, an epoxy resin used for crack injec
tions requires a cure of 12 hours at 20°C in order to be able to support 
mechanical testing [3]. To summarize, a glued structure is able to support a 
specified load when the corresponding TRP has been respected. 
During the cure of the adhesive, polymerization mechanisms can also be af
fected by moisture from the surface of the adherent. In facts, water molecules 
may modify the reaction kinetics or induce secondary reactions susceptible to 
affect the resulting structure of the polymer joint. A complete cure is hardly 
achieved with a very moisture sensitive glue, and interfacial areas may present 
mechanical weakness in such situation [4]. For this reason, the choice of the 
glue formulation is usually different if the adherent is wet or dry. 

2.2 Durability of adhesively bonded joints - control methods 

Even if implementation of the gluing technique has been realized in the accu
rate conditions and if the bond is supposed effective, the long-term durability 
of the glued assembly remains a serious preoccupation. The main objective 
for civil engineers is to control the evolution of the mechanic behaviour in 
order to ensure the safety of the assembling. 
First, it is well known that polymers behave as viscoelastic materials and 
that their mechanical properties evolve as a function of time, temperature 
and external loads. For this reason, a careful attention must be paid: 

• to the creep behaviour of adhesive joint which are submitted to perma
nent loads; 

• to the fatigue behaviour of glued assemblies submitted to periodic loads. 

For bridge elements, which support both the permanent weight of the struc
ture and the periodic load related to the traffic, creep and fatigue behaviours 
are both important parameters. 
Then, the adhesive bond may be sensitive to the environmental conditions. 
In the long-term, moisture and chemical attacks (salts, pollution ... ) may 
induce breaking of the chemical bonds at the polymer/ adherent interface, and 
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in extreme situations lead to an adhesive failure of the assembly. Moreover, in 
glued concrete structures, the polymer joint can be sensitive to the elevated 
pH and the alkalinity of the concrete. 
Fortunately, most of those problems can be technically solved by using an 
adapted formulation of adhesive. Nowadays, chemists are able to formulate 
products susceptible to satisfy all technical requirements, if such requirements 
are compatible each other. But one must keep in mind that the universal 
product does not exist. 
It remains finally a still unresolved problem: how is it possible to control the 
adhesively bonded joint along the whole interface by non destructive tests? At 
the present time, available methods are indirect and not quite reliable (mainly 
ultrasonic techniques). In the future, an improved knowledge of the interfacial 
areas may lead to the development of "in situ" control methods, opening new 
horizons for "smart" materials. The scientific community is clearly questioned 
about that subject. 

3 Experimental study 

As it was mentioned in the first part of the paper, organic materials and 
specially polymer resins are getting more and more popular in civil engineer
ing [5]. Epoxy resins are usually applied in the repair of concrete structures 
(bridges, walls, etc ... ) : they can be injected in cracks in order to restore 
integrity of the damaged concrete, or used as adhesives to paste composite 
or steel plates to the structure in order to improve the stiffness [6]. Those ad
hesives also open up new horizons for the design of bridges, since part of the 
structure elements could be assembled by adhesive bonding in the future. The 
major drawback of the gluing technique is the insufficient control of the long 
term durability of the adhesively bonded joint. Therefore, it is necessary to 
acquire basic knowledge about the mechanisms of adhesion between concrete 
and polymers in order to identify parameters that govern the durability of 
glued structures. Micro-thermal analysis constitutes an interesting technique 
for such an investigation [7], and the following section presents some experi
mental results concerning the microstructure of interfacial areas between an 
epoxy adhesive and concrete, or between the same adhesive and steel. 
Micro-thermal analysis is based on the recent developments of scanning probe 
microscopy. It combines the high spatial resolution of the conventional AFM 
technique with the characterization capabilities of thermal analysis. It is now 
possible to measure the thermal response of a polyphased material in a local
ized region rather than on a macroscopic scale. Therefore, J.lTA constitutes a 
"micro-equivalent" technique of the differential scanning calorimetry (DSC). 
Principles and possibilities of this technique are detailed in several papers by 
Price and a!. [8-10]. 
This technique has been applied with success to the characterization of var
ious multiphased materials based on organic components such as polymer 
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blends [9], pharmaceutical products [8, 11], multi-layered packaging films [10], 
composite laminates [12], adhesively bonded joints [13], etc ... .In these ap
plications, the technique imaged the internal structure of the samples and the 
contrast in thermal conductivity allowed the visualization of the spatial dis
tribution for each individual constituent. In a second stage, the calorimetric 
properties of those constituents (glass transition or melting transition tem
peratures) were evaluated by local thermal analysis. This provides precious 
information about the microstructure in the interfacial areas. For example, 
Jansen and al. [13], who studied the microstructure of aluminium/epoxy in
terfaces, found that the glass temperature (Tg) of the epoxy can be 20°C 
higher in the vicinity of the aluminium than that in the bulk polymer. These 
authors also showed that surface treatments of aluminium influence Tg of the 
polymer in the interfacial areas. It means that interfacial properties strongly 
depend on the surface chemistry of the substratum. Moreover, complemen
tary mechanical tests showed that the shear strength of the bonded joint 
may be correlated to the interfacial microstructure. This example taken from 
the literature gives a first illustration of the influence of physical-chemical 
properties on the mechanical behaviour of glued assemblies. 

3.1 Materials 

In our study, two different interfaces have been studied by micro-thermal 
analysis: 

• first, an interface between an epoxy polymer and a cement paste was cho
sen. The epoxy system was constituted of a DGEBA based resin ( digly
cidyl ether of bisphenol A) and a diethylene triamine hardener, while the 
cement was an ordinary Portland cement. The polymer/cement paste as
sembly was prepared by setting a piece of cement paste on the bottom of 
a mould and by casting the epoxy resin into the mould. After polymer
ization, the surface of the sample was polished (the roughness was about 
1 JLm); 

• then, an interface between epoxy polymer and steel was studied. The 
sample was elaborated with the previous epoxy system and with a cylin
drical piece of steel. Stages for the preparation of the sample are the same 
as those previously described. 

3.2 Technique 

The instrument used was a 2990 Micro-Thermal Analyser from TA Instru
ments. The heart of the system is a small temperature sensor consisting of 
a platinum wire heater /thermometer constructed from a Wollaston wire and 
bent into a V-shaped point. This sensor is mounted on the end of a cantilever 
which is scanned across the surface of the sample. 
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In a first stage, micro-thermal analysis acts both as a thermal microscope 
and as an atomic force microscope ( AFM), providing topographic pictures of 
the sample surface as well as contrast in thermal conductivity. 
In a second stage, specific features on the images can be selected for charac
terization by local thermal analysis. In this mode, a ramp of temperature is 
applied to the tip in contact with the sample, and the deflection of the tip is 
recorded as a function of temperature. Any phase transition of the material 
leads to a downward deflection of the tip. It makes possible a local evaluation 
of the glass transition temperature (Tg) at a specific location of the sample. 

3.3 Results and discussion 

Figure 1 shows the topography and the contrast in thermal conductivity 
provided by micro-thermal analysis in the neighbour hood of an epoxy/ cement 
interface. On the topographic picture, the line border between the two phases 
is clearly identified. On the thermal picture, the cement phase appears in 
pale grey (or in yellow for the coloured version of the paper) and the bulk 
polymer appears in black. An intermediate medium can be identified inside 
the polymer phase, in dark grey (or in red colour). This feature is typical 
of a modified polymer zone (called interphase) with a thickness of 10-15 
!Jill. Thermal local analyses were then performed in the polymer at various 
distance from the interface line. Figure 2 shows the evolution of the glass 
transition temperature (Tg) in the polymer as a function of the distance 
to the cement border. Tg keeps a constant value in the bulk polymer, but 
shows a progressive rise in the modified polymer zone when one get closer to 
the cement phase. A maximum Tg deviation of l0°C was observed between 
the interphase and the bulk polymer. This phenomenon reveals a reduced 
motion ability of the polymer chains near the concrete substratum, and could 
be related to a gradient of crosslink density of the epoxy network within the 
interphase. This local modification of the crosslink density may be induced by 
chemical or physical interactions between the epoxy polymer and the cement 
surface: 

• either a preferential adsorption of some components of the resin by the 
cement, which could modify locally the stoechiometry of the reactive 
system; 

• or the influence of active species from the cement surface (water mole
cules, functional groups) which could induce secondary chemical reac
tions; 
- or in more simple way, the influence of the substratum roughness which 
could trap macromolecular chains and reduce their motion ability. 

Further investigations by FTIR microscopy are required in order to confirm 
one of these explanations. 
Similar analyses were performed for the epoxy /steel joint. Figure 3 shows 
the contrast in thermal conductivity in the neighbourhood of the epoxy /steel 
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interface. The steel phase appears in pale grey (or in yellow for the coloured 
version) and the bulk polymer in black. As previously, an intermediate mod
ified polymer zone is identified in dark grey (red colour), but the thickness 
of the interphase is about 5 f.Lm. Complementary local thermal analyses were 
also performed. Again, Tg of the polymer was found constant in the bulk 
polymer and showed a progressive increase in the interphase area close to 
the steel border. The maximum deviation of Tg between the interface zone 
and the bulk polymer is about 20°C. The same physical-chemical mecha
nisms as in the previous configuration may explain the gradient of crosslink 
density in the interphase area. Nevertheless, the thickness of the interphase 
and the maximum Tg deviation of the modified polymer zone are different in 
the epoxy/ cement paste and in the epoxy/ steel systems. Therefore, the poly
mer/ substratum interactions and the properties of the interphase seem to be 
strongly dependent on the nature of the substratum (chemical species on the 
surface, roughness ... ). This is consistent with results found in the literature 
[13]. This interphase, which exhibits different properties from that of the bulk 
polymer, may have a significant influence on the mechanical behaviour of the 
bonded joint, and therefore on the durability of the overall glued assembly. 
The development of a mechanical modelling taking into account the existence 
of such an interphase is suitable and may lead to refinement in the design of 
adhesively bonded joints. 

4 Conclusions 

During implementation of the gluing technique, the formation of the adhesive 
bond is a physical-chemical process, which involves different stages: 

• wetting and impregnation of the solid substratum by the adhesive, 
• evolution of the liquid glue towards an equilibrium solid state, through 

chemical reactions (polymerisation). 

In the first part of this study, the conditions of implementation and their 
influence on the final properties of the polymer joint are discussed. Basic 
rules are given in order to optimize both the wetting of the adherent and the 
mechanical strength of the bond. Those specifications are concerned with the 
surface preparation of the adherent (specially for concrete and steel) and the 
conditions of cure (temperature and time of reticulation). 
In the second part of the article, the microstucture of epoxy joints has been 
investigated by a physical-chemical approach. Micro-thermal analyses, per
formed on epoxy/ concrete and epoxy /steel assemblies, have revealed the ex
istence of a modified polymer zone in the neighbourhood of the substratum. 
This interphase exhibits properties which are different from that of the bulk 
polymer, and its thickness seems to depend on the nature of the substratum. 
This modified polymer zone is suspected to play a significant role towards 
interfacial adhesion and durability of the bond. Such a result shows that a 
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physical-chemical approach may be complementary and even necessary to 
the mechanical point of view, in order to improve the basic knowledge on 
adhesive bonding. 
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Abstract 

At the level of constitutive equations relating macroscopic stress and strain 
measures, real materials exhibit a variety of behaviors. In the years, there was 
a tendency to focus on some prominent properties of material response and 
to study them individually; the result was the development of independent, 
sometimes unrelated, branches of Continuum Mechanics, such as Fracture 
Mechanics, Damage Mechanics, and many theories sharing the name of Plas
ticity. 

Some hope for recovering a unified view is provided by a simple model, 
based on the assumption that the total energy of a body is the sum of two 
parts, a bulk part representing the elastic strain energy and a surface part 
associated with defects occurring both at the macroscopic and at the micro
scopic level. In the model, defects are represented by discontinuities in the 
displacement field. Such discontinuities may be large or small, concentrated 
at a single surface or distributed over surface-like regions diffused through
out the body. The first case is typical of fracture, and the second of plastic 
deformation. 

At the present stage, the model is restricted to the one-dimensional case. 
Two or three dimensional generalizations are far from trivial, due to mathe
matical difficulties. Within this limit, fracture was studied in [1], plasticity in 
[4], and damage and other forms of progressive failure were considered in [3], 
[5]. A first comprehensive account was given in [2]. The present communica
tion can be viewed as an updated review of the state of the research; mainly, 
it is based on the contents of a paper in progress [6], in which emphasis is 
given to the mathematical structure of the model. The complete text of the 
communication is reported in [7]. 
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Abstract. This paper describes a new method for the analysis of masonry vaults 
based on the masonry-like material model. In the present work, restricted to the 
equilibrium of vaults, we look for a compressive thrust surface, contained within 
the extrados and intrados surfaces of the structure, carrying the applied loads and 
transferring them to the abutments of the vault. The optimal shape of such surface 
is obtained through minimization of a convenient form of relaxed energy. 

1 Introduction 

As a first approximation to the real behaviour of masonry structures the ma
sonry like material has been proposed. This crude model that describes the 
material as elastic in compression but incapable of sustaining tensile stresses 
(zero-tension material), was first rationally introduced by Heyman in [1]. 
The idea of a zero-tension material underlies more or less consciously the 
design of masonry structures since antiquity (see Benvenuto [2], Sinopoli et 
al. [3]), particularly for vaulted masonry structures and arches. 
For example, according to the well known method of Mery, the safety of the 
arch depends on the existence of any compressive thrust line, in equilibrium 
with the applied loads, within the rig of the arch. 
In the present work, concerned with the equilibrium of vaults, we look for 
a compressive thrust surface S, contained within the extrados and intrados 
surfaces of the structure, carrying the applied loads and transferring them to 
the abutments of the vault. 
Since a membrane is a statically determined structure, if S were given and 
composed of conventional elastic material, the equilibrium stress state, with 
proper boundary conditions, would be uniquely determined by the equilib
rium equations alone. On adding the unilateral constraints on stress, at least 
in regions where the constraints are active, both the shape of Sand the loads 
cannot be given arbitrarily and become part of the solution. In such regions 
the structure reduces to an underdetermined system, as a cord or a net. 
Keeping S fixed the load must be changed to verify equilibrium on the given 
shape. If loads are given the surface S must adapt in order to balance the 
prescribed loads. 
In the following we shall assume that the loads are fixed and consider S as 
an unknown smooth surface, constrained to lie in between the extrados and 
intrados surfaces of the vault. 
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The numerical strategy we have in mind to get a solution is to start with a 
tentative shape so and evolve it by minimizing a convenient form of energy 
with side constraints. The tool we are going to use is the powerful minimiza
tion program named Surface Evolver, developed by Brakke [4]. Starting from 
an initial faceted surface the Evolver evolves the surface toward minimum en
ergy by a conjugate gradient descent method. We have been lately involved 
in using such a tool to solve large scale minimization problems concerning 
nets [5] and axially compressed thin tubes [6]. 

2 Geometry of the problem 

We assume that Scan be given in the Monge description: 

(1) 

where y is the position vector of points on S, { e1, e 2, e3} a given ortho
normal triad, (0, x 1 , x2, x 3) a Cartesian frame coherent with such basis, 
(x1 , x2) E D are curvilinear coordinates on Sand f = f(x 1, x 2) is a smooth 
function of its arguments. 

D is a simply connected plane region, called the planform of S, whose 
boundary is endowed a. e. with a unit normal vector n. 
Though we assume that the shape S is not given, its planform will be con
sidered as fixed. 
The covariant bases associated to (x 1 , x 2 ) are: 

a1 = e1 + !,1 e3 , 

a2 = e2 + !,2e3 . 

(2) 

(3) 

Here a comma followed by an index, say i, stands for partial differentiation 
with respect to Xi • The unit normal to S is then 

a1 x a2 - !,1e1- !,2e2- e3 
a3 = = 

la1 x a2l J 
(4) 

where J = la1 x a2l is the Jacobian determinant. The reciprocal bases are: 

1 1 ( 2 ) a = 12 (1 + !,2) e1 - !,1 !,2 e2 + !,1 e3 , (5) 

2 1 ( 2 ) a = J 2 - !,1 !,2 e1 + (1 + !,1) e2 + !,2 e3 (6) 

3 Forces and equilibrium 

We consider the problem of equilibrium of S subject to a given surface load 
per unit area of: 

(7) 



www.manaraa.com

Equilibrium of Masonry Vaults 107 

Calling 

(8) 

the membrane stress on S , the equilibrium equations read 

(9) 

Projecting (9) on the three non-coplanar directions e 1 , e 2 , a 3 , after some 
algebra, we obtain: 

(JT11),1 + (JT12),2 + Jb(l) = 0' 

(JT21) ,1 + (JT22) ,2 + J b(2) = 0' 

J Ta{3 fwf3- J,aJ b(a) + J b(3) = 0 · 

Introducing the pseudo-stresses: 

and denoting: 

b 0 = Jb, 

the surface load per unit planform area, we can rewrite (10) as: 

s,~f3 + b(a) = 0 ' 

saf3 !,a{3 - !,ab(a) + b(3) = 0 ° 

that is essentially Pucher's form of membrane equilibrium. 

4 Stress function F 

To simplify analysis we assume (vertical loads): 

In this case the general solution of equations (13a), is: 

S 11 = F,22, S22 = F,u, S 12 = -F,12 . 

Introducing the curvature coefficients: 

an = !,22 , a22 = J,n , a12 = - !,12 , 

(lOa) 

(lOb) 

(lOc) 

(11) 

(12) 

(13a) 

(13b) 

(14) 

(15) 

(16) 
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we can rewrite ( 13b) in the form 

ao:f3 F.o:f3 - p = 0 , (17) 

that is a second order partial differemtial equation to be solved with proper 
side conditions. 

We restrict to the elliptic case (S concave) and consider the boundary 
conditions: 

dF 
dn = l(s) , over 8f2 (18) 

5 Material restrictions 

The restriction on stress that characterize the material as masonry-like are: 

det T ~ 0 , trT :::; 0 , 

which are equivalent to the zero-tension assumption: 

m · Tm ~ 0, \fm s.t. m · a3 = 0. 

In contravariant components these restrictions rewrite as: 

1 2(TllT22 _ (Tl2)2) ~ 0, go:f3Taf3:::; 0, 

where 9o:f3 = go: · gf3 are the metric tensor components. 

(19) 

(20) 

(21) 

Conditions (21) translate into the following equivalent conditions in terms 
of pseudo-stresses: 

f.-L(S) = 5 11 5 22 _ (5 12)2 ~ 0 , 

v(S) = (1 + /2)511 + (1 + J,I)S22 - 2f.d2S12 :::; 0 . 

(22a) 

(22b) 

The inequality (22a) defines as admissible the stress points (S11 , S 22 , 5 12 ) 
contained inside the right circular cone of equation 5 11 5 22 - (S12 )2 = o , 
with vertex in the origin, whose axis is the axis of isotropy, 5 11 = S 22 ' and 
whose wedge angle is 1r /2. Inequality (22b) defines as admissible the points 
belonging to a semi-space defined by the plane passing through the origin 
and whose equation is: 

(23) 

where we put m1 = !,1 , m2 = f. 2 . It is easy to see that for any value of 
m 1, m2 , the plane and the cone meet only in the origin. Therefore the linear 
inequality (22b) can be substituted with the easier inequality: 

v*(S) = 5 11 + 5 22 :::; 0. (24) 

In terms ofF the unilateral constraints on stress reduce to the form: 

F,n +F.22:::; 0, 

F,n Fm -(F,12 )2 ~ 0 . 

(25) 

(26) 

which are equivalent to require that the stress surface whose graph is F be 
concave. 
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6 Non fractured and potentially fractured regions 

For any statically admissible stress state S, [l can be splitted into three 
parts: 

[l = {x E D, trS < 0 and det S > 0} , (S biaxial) , 

[l = {x E D, trS < 0 and det S = 0} , (S uniaxial) , 

D = {x E D, trS = 0 and det S = 0} , (S = 0) . 

(27a) 

(27b) 

(27c) 

In D1 the stress is biaxial and strictly compressive, fractures cannot arise. 
In D2 the stress is uniaxial and compressive, fractures may arise in the di
rection orthogonal to compression lines. 
In D3 the material is inert and any kind of fracture may occur. 

It can be shown that in D2 the compression lines form a family of straight 
lines. The proof of this statement is similar to an analogous argument con
cerning the plane case (see [7]). The compression rays are lines potentially 
fractured. In the present context this means that, under the previous assump
tions on the load, the projection of the fracture lines over the planform must 
be straight. 

7 Variational formulation 

To the previous boundary value problem we give the following variational 
formulation: 

£(r, Fa) = min £(!,F) , 
F concave 
ko~J-:;;J, 

(28) 

where the energy [ is defined as follows: 

£(!, F) = ~ J aa{JF,aF,{Jda + J pFda - k J Fds , (29) 
n n an 

k = artfl) J pda . 
n 

In order to approximate both the surface S and the stress surface with sim
plicial surfaces we adopt a relaxation strategy based on the introduction of 
a family of relaxed functionals Eh whose minima converge to the minimum 
of the functional E as h --+ 0 . This is done in a way similar to that adopted 
in paper [8] where the 18M-method for elastic structures was introduced. To 
this end we consider a triangulation of the planform [l (primal mesh): 

Ih = {Dm, mE 1, 2, ... , M}, (30) 
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and a dual mesh: 

II h = { iln, n E 1, 2, ... , N}, (31) 

formed by polygons enclosing the nodes of the primal mesh, as shown in 
Fig.l. Here h represent a characteristic length of the primal mesh. 

a 

Fig. 1. Primal and dual mesh over a rectangular planform. 

The form of relaxed energy we consider is t hen: 

An example of the way in which both the surface of the vault and the 
stress function are approximated is shown in Fig 2. 
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Abstract. In this paper a homogenization procedure is developed for a one-dimensional 
reinforced masonry problem, considering the progressive damage and plasticity of 
the mortar and the block. The brittle failure of the FRP reinforcement is accounted 
for. The delamination effect of the composite sheets from the masonry element is 
also modeled. A numerical procedure is developed to study the behavior of the 
reinforced masonry. Numerical applications regarding the axial and the bending 
response of the material are presented. 

1 Introduction 

Fiber reinforced plastic (FRP) composite materials appears to be good can
didates to repair and to reinforce masonry constructions, since they are light, 
very simple to install and are also removable. Moreover, composite materials 
are characterized by high strength, good resistance to corrosion, durability 
and reduced installation and maintenance costs. As matter of fact, com
posite materials have been successfully used in several fields of structural 
Civil Engineering (Neale and Labossiere, 1992; El-Badry, 1996), mainly for 
strengthening concrete and wood structures. Triantafillou and Fardis (1995) 
and Triantafillou (1996) studied the applications of advanced composites for 
strengthening historical masonry structures. The behavior of walls, reinforced 
by carbon fiber sheets or conventional woven fabric bonded on the masonry 
surfaces, have been investigated with experimental tests by Schwegler (1994). 
Luciano and Sacco (1996, 1998) proposed a model for studying the behavior 
of masonry panels reinforced by FRP sheets. 

Although applications of advanced composites are successfully adopted to 
restore masonry structures, a lack of appropriate models and computational 
procedure able to predict the response of reinforced masonry can be pointed 
out. Thus, the aim of this paper is to investigate on the overall behavior of 
the masonry reinforced by means of FRP composite materials. 

In the present paper, the micro mechanics and the homogenization tech
nique for deriving a reinforced masonry overall model. The proposed approach 
has been succesfully adopted for modeling the masonry, regarded as a hetero
geneous material, with periodic microstructure, realized by bricks in a matrix 
of mortar (Kraly et al., 1991; Pietruszczac and Niu, 1992; Luciano and Sacco, 
1995). 
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Herein a one-dimensional beam model is studied (Marfia and Sacco, 2001). 
The model accounts for damage in tension and damage and plasticity in com
pression for the block and the mortar. The reinforcement brittle failure and 
the delamination process of the FRP from the masonry, is also considered. 
A numerical procedure, based on the arc-length technique with an appro
priate choice of the control parameters, is developed. Numerical applications 
regarding the study of the axial and the bending response of the reinforced 
masonry under different loading histories are presented. The beneficial effect 
of FRP reinforcement on the masonry behavior is emphasized. 

2 Masonry and reinforcement modelling 

The attention is focussed on the study of a beam obtained as a repetitive 
sequence of blocks and mortar. Moreover, FRP sheets are partially glued on 
the top and on the bottom of the beam. In Fig. 1 the unit cell representing 
one-half of the repetitive microstructure is reported; the total length of the 
unit cell is L = Lb + Lm, where Lb and Lm denote the block and mortar half 
lengths. 

glued 
zone 

unglued 
zone 

Fig. 1. Unit cell obtained from the periodicity and symmetry of the masonry. 

The masonry has constant rectangular cros:s-:section A 111 = b x h. The 
reinforcements on the top and the bottom of the masonry are characterized 
by the area::; A~ and An, respectively. With reference to Fig. 1, it is assumed 
that the reinforcement is in perfect adhesion on the block for a length equal 
to L 9 and it is completely unglued in the zone corresponding to the mortar, 
characterized by the length L, = L- L9 . 

With the aim of deriving the overall response for the defined unit cell in 
terms of resultant axial force and bending moment as function of the average 
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axial strain and curvature, one-dimensional continuous stress-strain relations 
for the mortar and the block are introduced and a FRP damage mechanism 
is considered. 

A simple one-dimensional constitutive relation is chosen both for the mor
tar and the block. It is characterized by a damage response in traction and 
damage-plasticity law in compression. In particular, the constitutive equation 
lS: 

!J = (1 -D) E (E- Ep) (1) 

where D is the damage parameter and Ep is the plastic strain, so that E- Ep = 

Ee represents the elastic strain. The Young modulus E of the block and mortar 
are denoted as Eb and Em, respectively. 

A damage evolution law, inducing a linear softening in the stress-strain 
relationship, is assumed: 

for Ed< E~ 

for E~ < Ed < E~ 

forE~< Ed 

(2) 

where E~ and E~ are the elastic strains corresponding to the undamaged 
and completely damaged material, respectively. The superscript ± is + in 
traction and - in compression. The governing evolution parameter Ed is set 
in a different way in traction and in compression. In fact, it is assumed that 
the damage in traction depends on the elastic stress, i.e. Ed = Ee, while in 
compression it depends on the total strain, i.e. Ed =E. 

The mortar and block response in traction, i.e. for !J ~ 0, can be consid
ered as purely cohesive, without any plastic effect. Thus, the plastic strain 
rate is set to be zero: 

for (3) 

The mortar and block response in compression, i.e. for !J < 0, presents a 
damage-plastic behavior. Introducing the effective stress a as: 

- (J 
!J=--

1-D 
(4) 

the following yield function with hardening is considered: 

f(a,a) =-a- (O'y + K a) (5) 

where a is the internal hardening variable and K is the plastic hardening 
parameter. The evolutive equations are: 

. . af . 
Ep =A aa =-A 

a= lspl = -sp 

(6) 

(7) 
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and the Kuhn-Tucker conditions result: 

I~O ~pI= 0 (8) 

The composite material behavior is characterized by a linear elastic re
sponse with quite brittle failure Barbero (1999). 

In the present work, the composite is considered as a linear elastic material 
with Young modulus Ec until a brittle failure, i.e. the composite is assumed 
to collapse suddenly when the tensile or the compressive stress reaches a 
threshold stress Iii in tension or Iii in compression. 

Moreover, the degradation is allowed also at the masonry-composite in
terface. The delamination of the composite sheet from the masonry element 
can be considered as brittle and mainly due to the shear fracture (i.e. mode 
II fracture) of the masonry, rather than to the damage of the glue. 

It is assumed that at the virgin state the adhesion between the laminate 
and the mortar is negligible, and thus the FRP is perfectly glued only to the 
block. Hence, it is considered the presence of an initial defect of adhesion 
in correspondence of the mortar. The fracture propagation is ruled by the 
classical Griffith criterion, setting the critical release rate energy Gc as the 
one associate to the fracture mode II of the block material (Bazant and 
Planas, 1998). Note that the fracture evolution is coupled with the damage 
and plasticity. 

Let (x, y, () be a Cartesian coordinate system such that ( lies on the 
center-line axis of the undeformed beam, as reported in Fig. 1. The kinematics 
of the cross-section is defined by the elongation e and the curvature x, such 
that the strain at a typical point of the beam is E = e + y X· 

In order to evaluate the overall behavior of the reinforced masonry beam, 
the unit cell is considered subjected to an axial force Ntat and to a bending 
moment Mtot· The elongation and the curvature for the masonry and the 
reinforcement are piecewise constant. In particular, it can be set: 

Note that the unglued reinforcement elongation and curvature eu and Xu 
can be evaluated as: 

(9) 

Xu = 7]b Xb + 7Jm Xm 

where 7]b = (Lb- L 9 ) /Lu and 7Jm = Lm/Lu. 
The reinforced masonry elongation etat and curvature Xtot are determined 

as: 
e9 L 9 + eu Lu 

L 
Xg Lg +Xu Lu 

L 

(10) 
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The resultant normal forces and bending moments in the masonry beam, 
computed by integrating the normal stress in the cross sections, are Nf/ and 
Mf/ in the glued block, Nb and Mb in the unglued block and Nm and Mm in 
the mortar. Analogously, the resultant normal forces and bending moments 
are N: and M: in the glued part of the composite reinforcement and Nu 
and Mu in the unglued part. 

The total resultant axial forces and the bending moments in the three 
parts of the reinforced masonry are obtained as: 

(11) 

Finally, as the axial force and the bending moment are constant along the 
whole beam, the six equilibrium equations are: 

(12) 

The delamination of the reinforcement from the masonry occurs when the 
critical energy Gc is equal to the energy release rate: 

(13) 

where c5W is the external work performed during the process, c5E is the elastic 
energy variation, c5<P and c51JF are energies dissipated for the plasticity and 
damage effects, respectively. 

3 Computational procedure and numerical applications 

Because of the damage, the plasticity, the brittle failure of the reinforcement 
and the possible delamination of the composite from the masonry, the solution 
of equations (12) is not straightforward. Thus, a computational procedure is 
developed. The numerical algorithm is summarized in the following. 

• The equilibirum equations (12) are written in the equivalent residual form 
and solved using a Newton algorithm; 

• the time discrete model is solved using a return map algorithm, adopting 
a predictor-corrector method (Simo); 

• the integration over the cross-section to determine the residuals and its 
derivatives is performed by discretizing the cross-section in stripes and 
applying the Gauss integration formula within each stripe; 

• the delamination effect is studied through a discretization of the evolutive 
equation according to a finite difference scheme, in the framework of the 
virtual crack method; 
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• the cylindrical as well as the linearized arc-length methods Crisfield, 1991) 
with local control are developed for the particular problem under consid
eration. 

Applications are developed for a reinforced masonry element characterized 
by mortar and block with the following material properties: 
mortar 

E+m =:_5000MPa a!f.,m : 3MPa K_m ~ 500MPa _ _ 
cc,m - 1E- 4 cu,m - 4E- 4 c c,m - 10E - 4 cu,m - 40E- 4 

block 

E~ =:_15000MPa a!f.,b : 10MPa K_!' =:_I500MPa __ 
cc,b - IE- 4 cu ,b - 6E- 4 cc,b - 15E - 4 cu,b - 60E- 4 

The masonry geometrical parameters are: 

Lb = 25mm Lm = 5mm 
b = 130mm h = 250mm 

which correspond to a typical masonry with blocks 50 x 130 x 250mm3 and 
mortar layers of lOmm width. 

A carbon fiber-reinforced plastic composite material with Young's mod
ulus Ec = 200000M Pa is considered. Note that , although the strength of 
the FRP sheets is generally different in traction and in compression, in the 
application developed in the following, it is set fJi. = JR. = 2500M Pa. It is 
assumed partially glued to the masonry so that L 9 = 22mm. 

Initially, the axial response of the reinforced masonry is investigated, ne
glecting the possible delamination. In Fig. 2 the axial force Ntot versus the 
strain etot is plotted in tension and in compression, respectively, for different 
values of the reinforcement area, with AR =A~= A:R. 
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Fig. 2. Axial force - strain (a) in tension and (b) in compression for different 
amounts of FRP reinforcement. 

It can be noted that the presence of the reinforcement improves the me
chanical response of the masonry. In fact, the reinforcement allows to transfer 
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the external axial force to the block, also when the mortar is completely dam
aged. 

In Fig. 3 the total bending moment Mtot is plotted versus the curvature 
Xtot for different amounts of FRP reinforcement, during the initial damage 
of the mortar. As for the axial problem, also for the bending case it is appar
ent the beneficial effects of the reinforcement in improving the mechanical 
response, and in particular the ductility, of the masonry. 

, " 
·~--~~---+r-----~~--~ oooooooo OOCICI0005 OOOCIOCt10 ooooorm. oooooo:zc 

CurRture (mm I 

Fig. 3. Bending moment - curvature relation for different amounts of FRP rein
forcement. 

Two different values of the critical energy release rate governing the de
lamination phenomenon are assumed Gc = 0.002-;- 0.04 N/mm; t hese values 
correspond to possible critical energies for the block in mode II. In Fig. 4(a) , 
the axial force Ntot is plotted versus the strain etot in compression using lines 
for different fixed values of the glued length L 9 of the reinforcement. In the 
same figure, the axial force-strain relation, which takes into account the de
lamination process, is represented with a thick line. The delamination occurs 
during the mortar damage, when the block still behaves elastically. 

In Fig. 4(b), the bending moment Mtot is plotted versus the curvature X tot 
for different fixed values of L 9 with thin lines, while the two curves with thick 
lines represent the material response taking into account the delamination 
process for two different values of the fracture energy Gc· It can be pointed 
out the significative influence of the delamination effects on the mechanical 
response of the reinforced masonry. Of course, it results that for higher values 
of the fracture energy the delamination occurs later. 

4 Conclusions 

The obtained results show the beneficial effects of the presence of the rein
forcement on the overall response especially when the masonry is subjected 
to tension and to bending. Hence, it can be deduced that the reinforcement 
of the masonry should be designed in order to work in tension, i.e. when the 
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Fig. 4 . Delamination process (a) in compression, (b) bending. 

masonry is subjected to traction or bending loading. Computations demon
strates that the delamination phenomenon affects significantly the reinforced 
material behavior, reducing the mechanical properties. For this reason it is 
very important to account for it. Furthermore, it should be noted that, when 
the masonry is in compression and delamination is present, the FRP could 
lose any loading capability, because of the instability effects of t he reinforce
ment. 
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Abstract. In this paper, we present an analysis of plane-strain associative dila
tant plasticity in presence of displacement discontinuities. The obtained results are 
amenable to straightforward particularization to any dilatant model and a Drucker
Prager yield criterion is considered as a model example. We formulate an enhanced 
finite element method incorporating the ( unregularized) discontinuous fields. Nu
merical results of a plane-strain localization analysis are discussed. 

1 Introduction 

Civil engineering problems are often characterized by the concentration of 
strains in narrow bands, typically indicated as "shear bands". Such a strain 
localization is frequently observed in geomaterials (e.g. soils, rock, concrete) 
and plays a crucial role in failure mechanisms. As a consequence, study of 
localization has many important applications in the analysis of structural [7] 
and geotechnical engineering problems (e.g. foundation collapse, excavation 
and slope stability, tunnel stability [4,5]). 

The so-called "strong-discontinuity" approach to localization analysis has 
been developed for general rate-independent classic plasticity in [3,12,15]. 
In these works, solutions involving a discontinuous displacement field are 
considered, together with the corresponding singular distributions of strain. 
Enhanced finite element methods incorporating regularized [12,15] or unreg
ularized [3] approximations of such discontinuous fields are formulated for 
the J2 flow theory model problem. 

An extension of the unregularized strong-discontinuity approach to the 
coupled case of a saturated poro-plastic solid is presented in [2,6]. 

In the present work, the general results of the analysis of strong dis
continuities in uncoupled elasto-plastic models [15] are re-obtained in a form 
amenable to straightforward particularization to any associative dilatant plas
ticity model. In particular, under plane strain assumptions, we obtain the 
localized dilatancy expression, the localization condition and the relation be
tween the stress and the displacement jumps at the discontinuity surface 
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(Section 2). These results are easily particularized for the case of a Drucker
Prager model, leading to a Mohr-Coulomb type localized softening law (Sec
tion 3). Following the approach proposed in [1,3], an enhanced finite element 
method is formulated for dilatant solids in plane strain conditions (Section 
4). In this numerical treatment, unregularized discontinuous fields are con
sidered, in contrast with the approach to dilatant models reported in [10,11]. 
In Section 5, representative numerical tests are considered to evaluate the 
performance of the implemented formulation. 

Throughout the present paper, comparisons are made with the unregu
larized strong-discontinuity approach to Drucker-Prager model reported in 
[13]. 

2 Strong discontinuities in dilatant elasto-plastic media 

In the following, we develop a plane-strain analysis of strong discontinuities 
in dilatant associative models. 

2.1 Kinematics 

In the solid fl, we denote by u the "large-scale" displacement field, satisfying 
standard regularity conditions. In a local neighborhood flx of the point x E 

fl, we consider the following "small-scale" displacement field [1], exhibiting 
a discontinuity across a surface rx with unit normal n in x (Fig. 1): 

(1) 

where Hrx is the Heaviside step function across rx and Nrx is a general 
smooth function. Note that the local field C corresponds to the displacement 
jump: [u11 ] = C. 

The strain field corresponding to (1) is given in the distributional sense 
by: 

=:€, regular distribution 

with or". the Dirac delta distribution across rx. 

2.2 Strong discontinuities in dilatant solids 

"-v-" 
~ingular di8tribution 

We consider the rate-independent associated elasto-plastic model defined by 
the following relations: 

iT = C(€1'- €~) (3) 

€~ =A 8u f 1i-1q := -6:11 = -A 8qj 
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Fig. 1. Kinematics of strong discontinuities in plane strain conditions 

with C the 4th order elasticity tensor,£~ the plastic strain tensor, f(u, q) the 
yield function and 1{ the isotropic hardening modulus. In (3), the strain-like 
and the stress-like conjugated hardening variables are denoted by aM and 
q, respectively. The usual loading/unloading and consistency conditions are 
added to these equations. 

In the following, a necessary condition for the appearance of the localized 
plastic flow >. = 5.. 5r is obtained for the plane-strain case. Under this as
sumption, denoting by t the unit tangent to r x, the localized dilatancy can 
be defined as the ratio cf> := (n/ 1(1 1, where (n := ( · n and ( 1 := ( · t are 
the normal and the tangential components of the displacement jump rate, 
respectively (Fig. 1). From equations (2) and (3), t he expression of the stress 
increment is obtained as: 

(4) 

regular distribution singular distribution 

Therefore, for the stress to be non singular, it must be: 

[sign(<\) cf> (n 0 n) + (t 0 n)8 J (1 = 5.. 8u f (5) 

The application of spheric and deviatoric operators on both members of (5) 
leads to, respectively: 

(6) 

The combination of these equations gives the localized dilatancy expression: 

cf>= 
1 (8uf: 1)2 

2 8uf: 8uf- (8uf : 1)2 
(7) 

Setting n = [cosO sine o]T and t = [- sine cosO o]T, withe the angle 
between nand the major (in plane) principal stress direction e 1 (Fig. 1), the 
following three scalar equations are obtained from (5) for the case of isotropic 
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yield function f: 

. · 2 . sign((t)<P 
Sign((t) <Xi COS e- sme cose = fJ (auf)! 

uf:l 

sign((t) <P sin2 e +sine cose = s~nj(~) <P (au !)2 
u .I 

sign(Ct) <P sine cos e- ~(sin2 e- cos2 e) = o 

(8) 

where (au fh and (au f)2 are the in-plane eigenvalues of au f. Equation (8)3 
and the combination of (8)!, 2 lead to the expression of the angle e and to the 
localization condition, respectively: 

=--arctan e 1 [sign((t)l 
2 <P 

(au fh -(au !)2 
auf: I 

(9) 

The consistency condition implies that both the regular and singular parts 
of j must be nil. The latter condition is satisfied as a consequence of (5). To 
verify the former condition, the softening law (3)2 must be understood in the 
distributional sense: 

(10) 

where il is the localized softening modulus. The following expression, obtained 
for the localized plastic flow: 

>- = auf: a-_ 
(aqf)2 1{ 

is introduced in ( 5) and ( 6 )I, leading to the localized softening relation: 

0 
( aqj <P ) 2 

- 0 Tr., sign((t) + <P err., = auf: I 1{ ICtl 

(11) 

(12) 

where Trx := tr., · t and O"rx := tr., · n are the tangential and the normal 
components of the traction vector trx = unlrx on the discontinuity rx. 
Remark 2.1. In plane strain conditions, (9)2 and (12) are respectively equiv
alent to loss of ellipticity of the elastic perfectly plastic tensor and to the 
localized softening law firstly reported in [15]. 

3 Model problem: associated Drucker-Prager 

Results obtained in the previous section can be easily particularized for a 
dilatant model defined by the following Drucker-Prager yield function: 

(13) 
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where s = dev(u) is the deviatoric part of the stress tensor and the pressure 
coefficient (3 is a material parameter. 

For the considered model, the expressions for the localized dilatancy (7) 
and for the angle e (9h read, respectively: 

1 [ . J2(1 - 2(32 /3) l e = -2 arctan sign((t) (3 (14) 

Denoting by (}1 , (}2 the in-plane principal stresses ( (}1 2 (}2 ) and by 8 3 the out
of-plane principal deviatoric stress, the localization condition (9)2 is satisfied 
for: 

with 
2 

(15) 

or, equivalently, for 8 3 + (3 /3 = 0. The post-localization relation (12) between 
the stress and the displacement jump rate reads in this case: 

(16) 

Remark 3.1. The continuum dilatancy is commonly defined as the ratio: 
(eP : 1) / lldev(eP)II· It is well known that in plane strain conditions, the 
following expression of the Drucker-Prager pressure coefficient 

/3= with if! the friction angle (17) 
6 sin2 if! 

3 + sin2 if! 

leads to the same continuum dilatancy prediction of the Mohr-Coulomb 
model [7]. The substitution of this expression in equations (14) gives: P = 
tanip and e = ±(7r/4- tp/2), as expected. In particular, as a consequence of 
P =tan ip, relation (16) assumes the same form of the localized softening law 
obtained for the Mohr-Coulomb model in [2]. 

Remark 3.2. As shown in [1], it is consistent to employ two different con
stitutive laws to characterize the continuum and the localized response, re
spectively. This approach is followed in [13], where a Drucker-Prager model is 
adopted for the continuum solid, whereas an independent Mohr-Coulomb law 
is introduced for the post-localization state. On the contrary, in the present 
work, it is shown that a Mohr-Coulomb type localized softening law (i.e. eqn. 
16) arises naturally from the continuum Drucker-Prager model. 

4 Enhanced finite element formulation 

On the basis of the approach presented in [1,3] for the J 2 flow theory, we de
velop in this Section an enhanced finite element method to solve the localized 
equations for dilatant elasto-plastic solids reported in Section 2. 
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Fig. 2. Displacement discontinuous interpolation function IJtre 

The multi-scale framework considered in previous sections is implemented 
in the finite element method by identifying the local neighborhood nx with 
the element De,loc c f? where localization has been detected. In particu
lar, .Prx in (1) is approximated by the unregularized discontinuous function: 
Wre(x) = Hr(x)- N(il(x) where NCil(x) = 1- (xCil- x) · nCil jh(i) is the 
linear shape function associated to node (i) sustaining the discontinuity line 
Fe (Fig. 2). The corresponding assumed enhanced strain field is expressed in 
terms of the element nodal displacements de and of the displacement jump 
components Ze = [(n. ; (tJT: 

IE:e = Bede -Geze+Peze br 
'-v-' 

conforming enhancement 

(18) 

for the standard strain matrix Be and for the enhanced operators: Ge = 
[(n0n(i)) 8 /h(i); (t 0 n(i)) 8 jhCil], P e = [n®n; (t 0 n) 8 ]. 

The following finite-element residual equation is obtained from the weak 
formulation of the continuum equilibrium: 

rd = r ext- nc~m r BeT u df? = 0 
e=l } flc. 

(19) 

for the nodal external force vector r ext. The symbol A denotes the assembly 
of all the nelem element contributions. The stresses u are obtained through 
the relation (3)1 in terms of the regular part € e := Bede - G e Ze of the 
enhanced strain field (18). 

We denote by Ae the area of the localized element and by lr,. the discon
tinuity length within De,loc· The weak formulation of the equilibrium on the 
discontinuity can be expressed in the form: 

1 OtE:e ,enh : U df? = 0 
n e, loc 

with OtE:e,enh = (fir - ~:) P e bZe (20) 
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The assumption of a piece-wise constant approximation of the enhanced and 
traction fields leads to the following finite-element residual equation: 

renh =-~ 1 p~ (1' dfl + tr = 0 
e ne,loc 

(21) 

The relation existing between the two displacement jump components, i.e. the 
localized dilatancy expression (7), allows the reduction of the enhanced modes 
to the single (te by application of the projection operator D = [sign( Cte )P; 1] 
to weak equation (21): 

1 r T Tenh =-AD lr pe (1' dfl + sr = 0 
e fle,loc 

(22) 

with sr := Dtr = Tr + sign(CtJ PO"r. 
In the generic time step [tn, tn+lJ, nonlinear equations (19) and (22) 

are solved through a Newton-Raphson iterative procedure. Return-mapping 
algorithms are employed in the integration of the post-localization stress
displacement relation (29) and of the bulk elasto-plastic model. 

Introducing the notation Ll(·) = (·)~k+il)- (·)~k2u with (k) the iteration 
number, and assuming a constant localized dilatancy, the linearization of 
equation (19) can be written: 

nelem 

r~k) - A (Ke Llde - Lee Ll(te) = 0 (23) 
e=l 

for the standard element stiffness matrix: 

Ke = 1BeTC Be dfl 
fle 

(24) 

and the enhanced operator: 

Lee= 1 BeTC Qe dfl 
ne,loc 

(25) 

Linearization of the local equation (22) leads to: 

(k) rT 
r enh = J-- Pe Llde - He Ll(te (26) 

for the enhanced operators: 

(27) 

with Pe = PeDT. 

In summary, the proposed finite element formulation implies the numer
ical solution of the system of equations (23) and (26). Solution of (26) gives 
local enhanced mode (t,e which is eliminated through static condensation in 
equation (23). However, similarly to what proposed in [14], we adopt the 
staggered static condensation procedure described in the following. 
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• At the element level, the enhanced parameter (t,e is obtained by solu
tion of non linear equation (22) (i.e., by driving renh to zero) for given 

displacements d~k). Therefore, this local Newton iteration involves the 
scalar equation (26) with L1de = 0. 

• At the global level, the following equation is solved: 

(k) A 
rd - (28) 

e=l 

obtained substituting in (23) the solution of the local problem (22)(r~~~ = 
0 =} L1(te = 1{; l L~e L1de) • 

In (22), sr = sr((tJ is obtained by integrating the given localized softening 
law (12) on the discontinuity re, that is: 

(29) 

for the general case with constant localized dilatancy, and: 

(30) 

for the particular case of the Drucker-Prager model (13). From this post
localization relation, also the term ds r j d(t,e of the enhanced tangent operator 
(27) 2 is obtained. 

Remark 4.1. The proposed enhanced finite element method is implemented 
in a mixed "P2/P1" 6-noded triangle element (quadratic interpolation of the 
displacements and linear interpolation of the volumetric strain and stress [9]). 

Remark 4.2. The strong discontinuity propagates through the mesh, with
out the spatial discretization knowing a priori its location. Following [8], the 
implemented procedure employs the localization condition (15) and the dis
continuity direction (14)2. 

Remark 4.3. The enhanced test functions considered in [13] depend on 
the particular localized constitutive relation. On the contrary, in the present 
work, we adopt test functions of the general form (20)2. 

5 Numerical examples 

To evaluate the performance of the proposed enhanced finite-element formula
tion, the numerical simulation of a plane-strain compression test is considered 
in this Section. Sample sizes are in the range typically adopted in these labo
ratory tests ( 4 x 14 em). Smooth basis are assumed and no confining pressure 
is applied on the unrestrained lateral boundaries. A vertical displacement is 
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Table 1. Material parameters considered in the numerical simulations 

Young modulus E 20000 kPa 
Poisson coefficient 1/ 0.25 
pressure coefficient (3 0.56 
initial yield stress Uy 63.41 kPa 
localized softening modulus il -50000 kPa/m 
continuum softening modulus 1i 0 kPa 

imposed to top base and bottom base is vertically restrained. We adopt the 
Drucker-Prager model described in Section 3 with a linear localized softening 
law. The overconsolidated clay parameters reported in Table 1 are considered. 
Note that, according to (17), the adopted (3 is obtained for 'P = 24°. 

The test is performed with two different discretizations of the sample: 
2 x 4 x 14 (Fig. 3a,c) and 2 x 8 x 28 (Fig. 3b,d) elements. To trigger localiza
tion, a 1% initial yield stress imperfection is introduced in a lateral element, 
distant 3.0 em from top base. To evaluate the effects of mesh orientation, 
computations are repeated for the "imperfect" element located at the right 
side (Fig. 3a,b) and at the left side (Fig. 3c,d) of the sample. 

The solutions obtained with the two meshes and for the two different 
positions of the "imperfect" element are practically coincident (Fig. 4a). 
Hence, the strong-discontinuity formulation leads to a solution independent 
from both the size and the alignment of elements in the mesh. The hor
izontal displacement distributions shown in Fig. 3 point out the localized 
elements and demonstrate the ability of the enhanced method in captur
ing localization. After localization, a super-convergence is attained (e.g.: 

llr~k)ll/llr~0 )11 = 1.0 ·10°; 3.6 ·10- 1 ; 6.5 ·10-13 ). 

The test is also performed by means of standard finite-element method 
with continuum strain-softening (H = -200 kPa). The obtained deformed 
configurations show that the standard formulation has difficulties in captur
ing localization (Fig. 5). In Figure 4b, a significant mesh-dependency of the 
standard F.E. solution is observed, in terms of the effects of both the size and 
the alignment of elements. Due to convergence problems, it is very difficult to 
perform the test after the attainment of the peak value of vertical reaction. 

6 Concluding remarks 

We have presented an analysis of strong discontinuities in dilatant elasto
plastic solids and an enhanced finite-element method incorporating unregu
larized approximations of such discontinuous fields. The results of represen
tative numerical simulations show the objectivity of the proposed enhanced 
method and its ability in capturing localization, in contrast with the response 
obtained with the standard finite-element formulation. 
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Fig. 3 . Strong-discontinuity formulation. Deformed meshes and horizontal displace
ment distributions for the 2 x 4 x l4 (a, c) and 2 x 8x28 (b, d) discretizations. Im
perfect element at the right (a, b) and at the left side (c, d) of the sample (top base 
vertical displacement: -2.21 . w-3 m ; amplification factor: 3) 
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to 2 x 4 x l4 and 2 x 8x28 meshes for t he cases of imperfect element at the right and 
at the left side of the sample. a) Strong-discontinuity FE formulation. b) Standard 
FE formulation 
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Abstract. It is well known that interfaces usually play a major role in the def
inition of the mechanical behaviour of engineering structures having interactions 
with the soil. In this paper the general framework of an elasto-plastic constitutive 
model developed on purpose for describing the interface behaviour is presented. The 
model is based on a Mohr-Coulomb failure criterion, including deviatoric harden
ing/softening, phase transformation state (compaction and dilatancy) and critical 
state. The choice of the constitutive parameters and their identification is first 
discussed. The predictions of the model are then presented and compared with 
available experimental data from various interface tests between sand and metal 
plates. The results of the numerical analyses emphasise the key role played by the 
volumetric behaviour of the interface (compaction and dilatancy), linked in some 
cases with the change in the normal stress acting on the structure surface and, 
consequently, controlling the shear resistance at the interface. 

1 Introduction 

When materials of different stiffness are in contact they undergo inevitably 
intense strain localization phenomena, stress concentration points are due to 
the inherently high stiffness heterogeneity between the adjacent media. This 
is the case of the classical granular soil-structure interaction problems. The 
serviceability of a wide range of engineering structures involving interfacing 
between structural elements and soil is highly dependent on the behaviour 
of the shear band forming close to the structure surface. This shear band, 
commonly referred to as the "interface", acts as a transition layer between 
the stiffer structural element and the softer soil medium. When strained in 
the tangential direction, it often exhibits a volumetric behaviour leading to 
compaction as well as dilatancy in the normal direction. 
The major effects of the interface layer on the general response of engineering 
structures involving interactions with soil are well known. In order to per
form a pertinent analysis of such problems, the experimental study of the 
essential features of the behaviour of interface and the formulation of reliable 
constitutive laws is mandatory. 

Experimental data from modified direct shear boxes (Potyondy 1961) have 
been often employed to investigate the behaviour of granular soil-structure 
interface and to enlighten the factors controlling the interaction between the 
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two media. This laboratory equipment has been the object of several modifi
cations, especially related to the possibility of reducing its principal deficien
cies (Wernick 1978, Desai et al. 1985, Boulon 1988, Hoteit 1990, Tabucanon 
and Airey 1992, Tabucanon et al. 1995). In this respect it is worth noting 
that a wide range of increasingly sophisticated testing devices are available 
to date. Among others, let us quote: the pull out apparatus (Brummund 
and Leonards 1973), the ring torsion apparatus (Yoshimi and Kishida 1981, 
Boulon 1988, Boutrif 1993), the simple shear apparatus (Uesugi and Kishida, 
1986) and more recently the cyclic three-dimensional simple shear interface 
apparatus (Fakharian and Evgin 1996), and the ring simple shear apparatus 
(Lerat et al. 1997). One basic phenomenological aspect is however common 
to all the apparatuses for interface testing: the observable kinematic state 
variables required for the description of the interface behaviour are the rel
ative displacements, rather than deformations as for a standard continuum 
medium. 

A number of models have been presented in recent past for the descrip
tion of the behaviour of interfaces. Most of them mainly concentrate on the 
behaviour of interfaces between granular soils and metal. 
In a first class of models, on the basis of results concerning the modelling 
of rock joints, the material of the interface is supposed to be linear elastic, 
or non-linear with a stress-displacement relationship of hyperbolic type in 
the normal and tangential directions (Desai et al. 1984). Hardening is not 
taken into account and the condition of failure, in terms of shear strength, is 
brought back to the traditional relation dictated by the Mohr-Coulomb failure 
criterion. At failure the normal stiffness remains constant and the dilatancy 
of interface in the direction normal to the direction of shearing is neglected. 
More complex models, incorporating the concepts of dilatancy, compaction 
and damage, have been also proposed within this theoretical framework (Pat
ton 1966, Goodman et al. 1968, Ladanyi and Archambault 1970 and 1972, 
Goodman and Dubois 1972). 
A second class refers to the theory of elasto-plasticity. Formulations relate 
as well to the assumptions of a perfect plasticity as those of an hardening 
material (inter alia: Ghaboussi et al. 1973, Desai et al. 1984, Boulon and 
Nova 1990, Gens et al. 1990, Desai and Fishman 1991, Sharma and Desai 
1992, Day and Potts 1994, Shahrour and Rezaie 1997). More sophisticated 
models have been proposed for the analysis of particular conditions such as 
cyclic loading (Aubry et al. 1990, Desai and Ma 1992) and softening (Desai 
and Ma 1992, Leong and Randolph 1994). Along with the new definition of 
the kinematic state variables, stresses are related to displacements, and the 
theoretical structure of these models remains identical to that of the majority 
of the elasto-plastic models suggested for the description of soil behaviour. 
Finally, also the use of polar continua (Tejchman and Tejchman 1990) and 
of directionally dependent rate type laws (Boulon 1991, Rouainia et al. 1992, 
Boulon et al. 1995) has been attempted. 
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Given the results of previous studies already published in the literature, the 
research presented herein addresses the possibility to model the behaviour 
of an interface subjected to monotonic loading using a purposely developed 
elasto-plastic constitutive model. The model has direct links with the Mohr
Coulomb failure criterion, includes deviatoric hardening/softening behav
iour, and integrates the phase transformation state (concept of compaction
dilatancy) and the critical state at large tangential displacements (parallel 
to the direction of shear). The choice of the constitutive parameters and 
their identification is discussed. The potential of such an approach to de
scribe the response of a real interface is assessed through the comparisons 
of model predictions with various laboratory interface test results performed 
under various conditions (constant normal stress, constant normal stiffness, 
constant volume). 

2 Basic concepts of interface behaviour 

Geometrically, the interface is defined as a thin zone of soil having constant 
thickness, which is formed close to the surface of the structure. Specific stud
ies seem to converge towards a quantification of the thickness "t" of the 
interface related to the average diameter (D50 ) of the grains; its determi
nation can be only done by direct visualisation (Yoshimi and Kishida 1981, 
Uesugi and Kishida 1986, Uesugi et al. 1988, Hoteit 1990, Boutrif 1993, Has
san 1995, Tejchman and Wu 1995, Zong-Ze et al. 1995, Lerat 1996). The 
thickness of this zone is strictly related to the roughness of the surface. The 
latter is usually referred to the average grain dimension by means of the nor
malised roughness coefficient Rn = Rmax/Dso , Rmax being the maximum 
gauge depth of the surface (Yoshimi and Kishida 1981). For a rough surface, 
available experimental results suggest values ranging between 5 and 10 D50 . 

If we focus our attention on the case of a two-dimensional problem (plane 
strain or axysimmetry) the kinematic state variables are the normal relative 
displacement Un and the tangential relative displacement Ut , and the cor
responding stress variables are the normal stress O" n and shear stress T. As 
already mentioned, the concept of deformation for an interface test is rather 
random. If one supposes a mechanism of deformation in simple shear the 
distortion "( = Ut jt and the normal deformation En = Un jt depend on the 
thickness of the interface. The definition of this thickness is however variable, 
being related to the average size of the grains; it involves consequently an un
questionable scale effect. As a matter of fact the only measurable kinematic 
quantities are the displacements (normal or parallel to the interface layer). 
Interface mechanical behaviour shows strong similarities with the mechanical 
behaviour of granular soils tested in the triaxial apparatus. This particular 
aspect has been skilfully discussed by Boulon and Nova (1990); it is be
yond the scope of this paper to re-analyse such a typical results of interface 
tests. It can be stated that interfaces are both pressure-sensitive and density-
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dependent, in the sense that: increasing levels of normal stress will induce 
higher values of maximum shear resistance; depending upon the initial den
sity of the soil the interface either contracts or dilates. Compaction during 
loading is typical of loose interfaces and holds until failure is reached, for 
such a density state material hardens until failure. On the other hand, dense 
interfaces experience during loading low initial compaction and significant 
dilatancy at yield. As it is well known, such a density state is often associ
ated to softening behaviour after the point of peak shear resistance. At large 
tangential displacements, the volumetric behaviour is characterised either by 
a normal displacement rate equal to zero, according to the general findings 
of the critical state theory, or by a second phase of compaction associated 
to wearing phenomena (Williams 1980, quoted in Leong and Randolph 1991, 
Plytas 1985, Hoteit 1990, Lerat 1996). All the elements which have been just 
introduced will have a considerable role in the formulation of the interface 
constitutive model. 

3 Formulation of the elasto-plastic stress-displacement 
law 

As already mentioned, the model has been formulated to describe the behav
iour of the granular soil-structure interface subjected to monotonic loading 
within the framework of the theory of elasto-plasticity. Thereafter, the fol
lowing assumptions will be adopted: 
1. The interface represents the remoulded zone of soil adjacent to the surface 
of the structural element. In granular materials, in absence of a direct mea
surement, the thickness "t" of this layer can be estimated as being a multiple 
of the average diameter of the grains (D50 ). 

2. The formulation will be limited to the two-dimensional case (case of prob
lems in plane strain or having a symmetry of revolution). Following the gen
eral approach of incremental elasto-plasticity the kinematic state variables 
are the normal relative displacement of the interface, Un , and the tangential 
relative displacement of the interface, Ut • The associated stress variables are 
the normal stress, an, and the shear stress, T, parallel to the direction of the 
interface, E = (an, T) T is the stress vector and !I = ( Un , Ut ) T is the relative 
displacement vector. 
3. Stresses and displacements are taken as positive in compression, and con
sidered homogeneous within the interface layer. The soil is assumed to be 
dry, so that analysis can be performed in terms of total as well as effective 
stresses. 

In the following the general formulation briefly outlined, based on experi
mental evidences, will be applied to the specific problem of the soil-structure 
interface. 
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3.1 Elastic response 

The elastic behaviour of the interface is given by the following linear relation: 

(1) 

The Ke matrix contains the stiffness of the interface in the normal (Kn) 
and tangential (Kt) directions, which might be considered dependent on the 
initial normal stress and the initial density. For instance, possible expressions 
are: 

(2) 

where kn , kt and N are three constitutive parameters of the model, a-ni is 
the initial normal stress acting on the interface. Note that the elastic response 
does not consider a coupling between normal and shear behaviour of the 
interface. 

3.2 Yield criterion and hardening/softening law 

Experimental evidences show that during interface tests under various con
ditions (i.e. constant normal stress, constant volume, constant normal stiff
ness) the relationship between normal and shear stresses at failure is well 
approximated by the Mohr-Coulomb model. Therefore, neglecting cohesion, 
the failure condition is given by: 

(3) 

where 6 f is the friction angle of the interface at failure and J.L f = tan 6 f 
is the coefficient of friction. In perfect analogy with granular soils, interfaces 
experience during loading (shear) progressive hardening behaviour and sig
nificant reduction in shear stiffness until failure is reached. Such a hardening 
phase could either tends to a plateau (loose interfaces) or evolves into strain
softening and then lean towards a final plateau corresponding to the critical 
state (dense interfaces). 
A schematic sketch of such a response, in terms of evolution of the stress 
ratio J.L = T /a-n versus tangential displacements Ut, is presented in Fig. 1 (a). 
Continuous hardening, typical of loose interfaces, leads to a progressive mo
bilisation of the coefficient of friction J.L, which increases until reaching the 
limit value J.Lt at failure. The latter coincides also with the residual value Jlr 
at large tangential displacements. The hardening/softening response of the 
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interface, on the other hand, corresponds to increasing values of the coefficient 
of friction Jl, which grows towards 11 f, and then decreases to the asymptotic 
residual value /lr corresponding to the coefficient of friction at constant vol
ume (critical state). In the plane u n-T such an evolution of the stress state 
during hardening, in agreement with the frictional failure criterion (3), cor
responds to a counter-clockwise rotation of the locus T = fJU n , starting from 
the initial position coinciding with the axis T = 0, until the failure line (/1 
= fJJ) defined by equation (3), as shown in Fig. 1(b). The softening phase is 
well represented by a clockwise rotation of the same locus until the residual 
state (/1 = Jlr). Consequently the yield mechanisms, whatever hardening or 
softening, are obtained by a generalisation of the Mohr-Coulomb failure cri
terion, as suggested by the deviatoric hardening concept (Poorooshasb and 
Pietruszczak 1985, Sadrnejad and Pande 1989, Pietruszczak and Niu 1993, 
Bencheikh 1991). 
The rotation of the yield surface in the un-T stress plane due to deviatoric 
hardening/softening is assumed to be a function of the plastic relative dis
placements generated within the interface layer during shearing. The yield 
surface F is governed by the standard Mohr-Coulomb failure criterion; the 
equation adopted is: 

(4) 

In this equation Jl(e) is the hardening/softening function, giving the 
evolution of the mobilised friction coefficient during loading. 
Based on the schematic diagram shown in Fig. 1(a), in the hardening regime, 
the function Jl(~P) is assumed of hyperbolic type; it can be defined explicitly 
as: 

and Ut < u{ (5) 

u{ being the tangential displacement of the dense interface at failure (i.e. 
peak in the diagram shown in Fig. 1(a)). In equation (5) /lf is the coefficient 
of friction at failure, /lo = tan 00 is the friction coefficient delimiting the initial 
elastic region (0 0 is the initial friction angle). Inside this wedge-shaped region 
(Fig. 1 (b)) only reversible relative displacements are permitted, given by 
inverting relation ( 1). The parameter t is the thickness of the interface layer, 
A is a parameter of the model governing the shape of the hardening fonction, 
u ni is the initial normal stress and Po is a reference pressure. The introduction 
oft into equation (5) allows to consider an internal length parameter for the 
interface. The ratio !!..ni , as it will be discussed later, is introduced in order 

Po 
to take into account the effect of the normal stress u n on the shape of the 
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curves of mobilised shear stress. The variable ~P is the hardening parameter; 
it is given by the following relation: 

(6) 

where u;:;_ and uf are the plastic normal and tangential relative displace
ments cumulated during loading. In the softening regime (ut > u{ ) the 
evolution of the yield surface is governed by the following equation: 

f.L(e) = f.Lr + (f.LJ- f.Lr)sech [ ~o (e- ~~)] and Ut > u{ (7) 

where two more parameters are added, namely: Ao and /Lr· The former 
controls the shape of the softening function (7), the latter defines the resid
ual friction coefficient of the interface at large tangential displacements, i.e. 
at critical state. The variable ~~ corresponds to the value of the hardening 
parameter at failure (i.e. when f.L = /LJ ). 
It has to be mentioned that softening behaviour has been considered in this 
work only with a view of modelling simplicity. There is no doubt that many 
factors are at the origins of this phenomenon, for instance shear banding in
stability (De Gennaro and Pande 1998) or other various aspects that have 
been fully described elsewhere and will be not be investigated here (Boulon 
and Jarzebowski 1991, Desai and Ma 1992, Leong and Randolph 1994). 

3.3 Plastic potential and flow rule 

Plastic relative displacements appear if the condition F = 0 and the condi
tion of consistency dF = 0 are simultaneously fulfilled. Their magnitude and 
direction are given by the definition of the plastic potential function Q and 
of the flow rule. The pertinent choice of the plastic potential function, Q, 
is essential to reproduce the typical volumetric behaviour observed during 
interface tests, which is assumed here to be only plastic. Consequently, its 
expression should be suitable for the description of the following phenomena: 
1) the presence of an initial compaction (dun>O) in a test with constant nor
mal stress, or correspondingly a reduction of the stress an, normal to the 
interface layer, in a test with imposed constant volume or constant normal 
stiffness; 
2) the existence of a threshold corresponding to the phase transformation 
from compaction (dun>O) to dilatancy (dun<O), which corresponds, in a test 
with imposed constant volume or constant stiffness, to an increase of the 
normal stress an; 
3) the stabilisation of the normal relative displacement Un, or the normal 
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stress an, on an asymptotic value for large relative tangential displacements 
of the interface (i.e. dun = 0 or dan = 0). This corresponds to the salient 
features of the critical state theory, where constant volume conditions are 
assumed at failure. 

Compaction (i.e. dun > 0 or dan < 0) due to grain crushing at very large 
tangential displacements and high normal stresses is not considered in the 
present version of the model. 

In order to describe the above-mentioned phenomena (points (1) to (3)), 
non-associated elasto-plasticity has been assumed. The plastic potential func
tion is: 

an 
Q = T + Mean ln -

a a 
(8) 

where the parameter Me is the slope of the phase transformation line T = 
Mean and a a is defined by the current state of stress acting on the interface. 
Taking into account equation (8), a 0 can be expressed as: 

(9) 

The plastic potential function introduced is analogous to those proposed 
for soils by Poorooshasb and Pietruszczak (1985), Sadrnejad and Pande 
(1989) and Pietruszczak and Niu (1992 and 1993). Typical plots of the func
tion Q in the an-T plane are presented in Fig. 2. This function describes a 
series of continuous surfaces which expand progressively during deformations, 
changing in size but not in shape (i.e. with the same derivatives on points 
having the same coefficient of mobilised friction). Differentiating equation (8) 
and rearranging using equation (9), the plastic relative displacement incre
ments are: 

[ ~~~ ] = dA [Me l M] (10) 

Thus compaction holds if M < Me ( du~ > 0) and dilatancy takes place 
if M > Me ( du~ < 0 ) . The phase transformation state corresponds to the 
condition M =Me, as a result du~ = 0 (points A, B, C in Fig. 2). The dilatancy 
of the interface, D, is given by the following relation: 

duP 
D = ____!>:. = Me - M 

duf 
(11) 
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It is worth noting that dilatancy at large relative tangential displacements 
is constant and tends towards the asymptotic value D = J-lc - J-lr (J-lr = J1 f 
in a loose interface). Therefore, residual zero rate of volumetric deformation 
of the interface at large tangential displacements, in agreement with experi
mental observations (i.e. critical state), cannot be reproduced if equation (8) 
is considered. 
In order to introduce this further important feature of the volumetric be
haviour of the interface, a modified form of the potential function is now 
proposed. 

3.4 Behaviour at critical state 

One of the assumptions of the critical state theory is that at large tangential 
displacements associated with failure the rate of volumetric strain is zero. 
Considering this in terms of evolution of the void ratio, e, of the sand, this 
means that at critical state the void ratio is constant, equal to the critical void 
ratio ecr introduced by Casagrande in 1936. At large strains, the void ratios of 
loose and dense granular structures have the same asymptotic value, namely 
the critical void ratio ecr· Since the early works of Taylor (1948) and Roscoe 
et al. (1958) quoted in Atkinson and Bransby (1978), there are a number 
of experimental findings obtained with various equipments that corroborate 
this assumption. 
We examine now the conditions that allow to introduce the required zero 
dilatancy rate at the interface associated to the critical state. From equation 
(11) such a requirement is fulfilled if 

Ut --+ 00 =? D = (J-lc - J-l) --+ 0 (12) 

In addition, at critical state, we also know that: 

Ut --+ oo =? J1 --+ J-lr = tanr5r = constant (13) 

and J-lr = J1 f in the case of continuous hardening until critical state con
dition. From equations (12) and (13) it can be deduced that: 

Ut --+ 00 =? D = (J-lc - J-lr) --+ 0 (14) 

and condition (14) is checked if 

f-lc --+ J-lr (15) 



www.manaraa.com

142 V. De Gennaro, R. Frank 

Consequently, the condition of zero dilatancy at the interface at critical 
state can be obtained if the coefficient J.Lc , the stress ratio at phase transfor
mation state, increases after phase transformation towards the final value J.Lr 
(i.e. towards the stress ratio at critical state). Condition (15) corresponds to 
an evolution of the size of both compaction and dilation regions. 
The mechanism is described in Fig. 3, on a typical stress path involving ini
tial compaction, phase transformation and dilatancy (e.g. interface tests at 
constant volume), without taking into account for the time being softening 
behaviour (J.L f = J.Lr). Following the indicated path, at point C, for a fric
tion coefficient J.L = J.Lco there is a transition from compaction (J.L < J.Lco) to 
dilatancy (J.L > J.Lc0 ). At a generic point M, in the dilation region, two dif
ferent potential surfaces are plotted. The first (Q'o) is given by the family 
of functions in equation (8), admitting J.Lco constant. The second (Ql) has 
been plotted admitting an increase of the coefficient J.Lc from the initial value 
J.Lco to J.Lc1 according to condition (15). By comparing the direction of the 
plastic displacement vector at point M, it can be argued that dilatancy at 
the interface can be substantially reduced assuming Q1 as the current poten
tial function. The minimum value of dilatancy is obtained when the phase 
transformation surface T = J.Lcian is close to the failure locus T = J.LJan, so 
that D = (J.Lcl - f-LJ) -+ 0 (condition (14)). This is associated to a progres
sive shrinkage of the dilation region. If softening is expected, after reaching 
the maximum value J.LJ, the coefficient of friction reduces to J.Lr while the 
dilation region slightly expands (Fig. 1 b). In this case the minimum value 
of dilatancy is obtained when the phase transformation surface is close to 
the residual locus T = J.Lran , so that D = (J.Lci - J.Lr) -+ 0 (condition (14) 
with f-LJ = J.Lr)· Such a mechanism has a direct physical interpretation. Yield 
of dense interface layers due to shearing causes plastic dilation, resulting in 
an increase of the voids in the sample (shrinkage of the dilation region). On 
the other hand, shearing on loose interface layers causes an opposite effect, 
leading to an overall compaction of the interface and a reduction of the void 
ratio (shrinkage of the compaction region). 
It is noticed that, within the theoretical framework of the model, this is 
equivalent to a change in shape of the surfaces given by the plastic potential 
function Q (equation (8)), which is implicitly taken into account by allowing 
for an evolution of parameter f-Lc· As suggested by the experimental results, 
in order to introduce such a mechanism in the model formulation, it has been 
chosen to consider the void ratio as the internal state variable of the poten
tial function Q, enabling to represent the volumetric plastic behaviour of the 
sandy interface. It is then admitted that the parameter J.Lc in equation (8) is 
not a constant during deformation but is related to the evolution of the void 
ratio e of the sample, so that: 

J.Lc = J.Lc(e) (16) 
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It is assumed that the void ratio e is a function of the plastic relative 
displacements normal ( duf, ) and tangential ( duf ) to the interface via the 
hardening parameter e (equation (6)). The evolution rule of the void ratio 
reads: 

(17) 

when J-l ~ J-leo et eea > eer (i.e. loose interface), or 

(18) 

when J-l ~ J-leo et eea < eer (i.e. dense interface). 
In equations (17) and (18) t is the thickness of the interface, J-leo defines 

the extension of the initial contracting region of the interface (i.e. the slope 
of the phase transformation line), B is a constitutive parameter controlling 
the shape of the evolution rules (17) or (18), ~a is the cumulated plastic 
displacement at phase transformation (when J-L = /-lea), eea and eer are the 
void ratio of the interface at phase transformation and the critical void ratio 
(asymptotic value of e when Ut ---t oo), respectively. Typical plots of equa
tions (17) and (18) are presented in Fig. 4. Starting from the stress state 
corresponding to the phase transformation (J-L = /-lea), dilatancy is given by 
equation (11), where now J-le = J-Le(e). In order to reproduce the condition 
of shearing at constant volume at large tangential displacements (i.e. critical 
state), the following expression is proposed for the parameter J-Le(e): 

J-Le(e) =/-leo+ (J-L- /-lea) D(e) (19) 

The rate of dilatancy at the interface is controlled by the function D (e), 
defined as 

D(e) = 1- sech [c ( ::i) Arctanh C:J] (20) 

In equations (19) and (20) C is a constitutive parameter of the model, J-l 
is the coefficient of friction mobilised during shearing, Uni is the initial nor
mal stress and Po is a reference pressure. The ratio .ni. is introduced in order 

Po 
to take into account the observed reduction in dilatancy at higher normal 
stresses. Obviously, at phase transformation J-L = /-lea, and equation (19) is 
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thus written f.Lc(e) = f.Lco· Figure 5 shows the evolution of J.L, f.Lc and dilatancy 
D = f.Lc - 11 versus the hardening parameter e (cumulated plastic displace
ments). 
In the case of a dense interface ( eco < ecr) dilation is predominant (super
script D, Fig. 5), and at large cumulated plastic displacements the value of e 
increases asymptotically towards ecr (equation ( 18)). The coefficient of fric
tion J.L first increases towards J.L 1 and then decreases towards f.Lr (equations ( 5) 
and ( 7), hardening/ softening response), while D (e) increases towards unity 
(equation (20)). Therefore equation (19) at critical state can be written: 

f.Lc(e) = f.L (21) 

and on the basis of equation (11) D = 0. 
In the case of a loose interface ( eco > ecr), compaction appears from the 
beginning of the loading process (superscript L, Fig. 5) and the value of e 
decreases towards the asymptotic value ecr (equation (17)). The coefficient of 
friction J.L increases progressively until the limit value f.Lr (equation (5)) and, 
as in the case of a dense interface, D( e) increases towards the unity (equation 
(20)). Again, based on a similar discussion, condition (21) is fulfilled at large 
tangential displacements and D = 0. It must be noted that for a loose interface 
the value of 

f.L~o is close to the limit value f.Lr· This leads to a reduced rate of mobilised 
dilatancy during shear and an overall compressive volumetric behaviour of 
the interface. 

4 Identification of constitutive parameters of the 
model 

As formulated the model allows for progressive refinements in order to ac
count for various features of the interface behaviour. In the complete version 
it requires thirteen parameters; these are: kn , kt , N, f.Lo , f.LJ , u{ , f.Lr , 
f.Lco , A, Aa , B, C, ecr· For their determination one can use results of inter
face tests at constant normal stress or constant volume and, at the occasion, 
the results of oedometric or isotropic compression tests. In the following, the 
methodology of parameters determination is briefly examined. 

4.1 Elastic parameters: kn , kt and N 

On the basis ofrelation ( 1), the normal and tangential stiffness of the interface 
depend on the values of parameters kn , kt and N. These relations are similar 
to existing empirical relationships proposed for Young's modulus. Both kn 
and kt are introduced in order to take into account the dependence of the 
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stiffness on density, whereas the coefficient N allows to consider a possible 
dependence on the normal stress. If N = 0, the dependence on the normal 
stress is neglected. The parameter kt is found knowing the initial slope of 
the curve of mobilised shear stress ( T) versus tangential displacement ( Ut) 
of the interface. Such a slope, corresponding to the ratio .:r.. , is the value of 

Ut 

the tangential stiffness Kt . The determination of the initial slope is rather 
delicate and often imprecise. In practice, one can either consider a secant 
stiffness or, if available, the slope of the unloading branch of the shear stress 
versus tangential displacement curve. For instance, in the first case, it can be 
assumed that: 

(22) 

where Uta is the tangential displacement corresponding to the mobilisation 
of half of the maximum shear resistance T 1 and O" ni is the value of the initial 
normal stress acting on the interface. From equation (1) it can be deduced 
that: 

(23) 

where the value of parameter N is obtained through curve fitting of the 
values of the initial tangential stiffness plotted against the applied initial 
normal stresses O"n;.The parameter kn depends on the compressibility of the 
interface. Its determination is thus possible from oedometric compression 
tests on the interface material. Obviously, this type of tests is not easy to 
realise, because of the difficulty to reconstitute samples having small thickness 
at a given initial density. Other factors, such as the density state, the normal 
stress level, the type of test (constant normal stress, constant volume) and the 
type of apparatus also affect the determination of interface normal stiffness. 
When appropriate, it is proposed to deduce kn from standard eodometric 
compression tests. Volume changes during oedometric compression are: 

dv de 

Vi 1 + ei 

dh 
hi 

(24) 

where vi is initial specific volume, h; is the initial height of the sample 
and ei is the initial void ratio. In oedometric compression: 

dv = -d dO"v 
s O"v 

(25) 
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where C's is the swelling index giving the slope of the unloading branch 
of the vertical (normal) stress (a v) versus the specific volume changes curve. 
Then, from equations (24) and (25): 

(26) 

Equation (26) allows to identify the normal stiffness Kn ; we obtain: 

(27) 

where a v is calculated at the beginning of unloading. It is then possible 
to evaluate kn 

k _ Kn 
n- N 

ani 

4.2 Plastic parameters: p,0 , JLf ,u{ , P,r and P,co 

(28) 

The value of the parameter f-Lo = tan 60 defines the extension of the initial 
elastic region of the interface, where 60 is the minimum friction angle mo
bilised at the interface (Fig. 1). 
The parameters fL f and f.Lr are the coefficients of friction of the interface at 
failure and at residual state, respectively. Usually f-LJ = f.Lr in loose interfaces. 
They can be determined easily from interface tests at different constant nor
mal stresses by linear interpolation of points (an , T) at failure and at residual 
state. Their values correspond to the slope of the Mohr-Coulomb failure line 
(J.L f) and the ultimate linear envelope at residual state (J.Lr), as shown in Fig. 
lb. The value ofu{ defines the position of peak shear resistance in the dia
gram ucT (Fig. l(a)). It should be mentioned that, due to the amplification 
of dilation characteristics of granular materials at low imposed normal stress 
levels, such a determination could lead to a small underestimation of fL f. The 
parameter /-Leo is the coefficient of friction at the points of phase transforma
tion (Fig. 2). At these points, in an interface test at constant normal stress, 
the rate of the normal relative displacement is zero (Fig. 5). The value of f.Lco 
can be identified much easier from an interface test at constant volume. In 
fact, it can be determined at the point where the stress path in an-T plane 
changes of direction (point C in Fig. 3). 
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4.3 Parameters: A, Ao, B, C and ecr 

The parameter A appears in the expression of the hyperbolic hardening func
tion ( 5). It allows for the control of the shape of the curve of mobilised friction 
at the interface. Differentiating equation ( 4), it is possible to write: 

dT ani ( /-lf - J-lo) f3 
d~P- ((3+~P)2 

(J=Aanit 
Po 

(29) 

Where tis the thickness of the interface layer, assumed to be a multiple of 
the average grain diameter D50 . The value of A can be obtained by imposing 
the continuity of the value of the initial slope of the experimental curve 
(ut, T) with the value of the analytical tangent :;P given in equation (29), 
calculated when ~P = 0. The initial slope of the experimental curve (ut, T) is 
the tangential stiffness Kt, so that 

ani(J-LJ-J-Lo) -K 
(3 - t 

As a result, the parameter A i 

A = ( J-l f - J-lo) Po 
Ktt 

(30) 

(31) 

The parameters A0 , B and C can be deduced following a procedure of 
optimisation by successive adjustments. Ao controls the shape of the softening 
function in equation (7), B controls the shape of the evolution rule of the 
void ratio (equation (17) or (18)) and C controls directly the shape of the 
evolution rule of the parameter J-lc (equation (19)) and indirectly the rate of 
mobilisation of dilatancy at the interface (equation ( 11)). 
The remaining parameter ecr can be easily obtained if tests characterising the 
critical state of sand are available, or can be roughly estimated from interface 
tests at constant normal stress. In this latter case, from the definition of the 
void ratio, we can write: 

(32) 

where Yo and ho are respectively the initial volume and the initial height 
of the sample, 1 s is the unit weight of grains and W s is the weight of the 
dry sample. The value of Unf in equation (32) is the asymptotic value of the 
normal relative displacement of the interface at large tangential displacement 
(Fig. 5). 
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5 Validation of the model 

In order to check the capability of the model in predicting the interface behav
iour, the simulations of interface tests at constant normal stress and constant 
volume are now presented. 

5.1 Test at constant normal stress 

Let us first consider the results of the interface tests at constant normal stress 
between a Fontainebleau sand and a rough metal plate (Rn = 1) performed 
in a modified direct shear box. The physical characteristics of this sand are 
shown in Table 1. The sand samples tested have an initial density index ID 
equal to 0.46 (eo= 0.753) and an imposed normal stress ranging between 25 
kPa and 400 kPa. Following the methodology described in section 4 the nu
merical computations have been performed assuming one set of parameters, 
namely the parameters determined from the results of tests BS3 at ani = 100 
kPa (Table 1). The other tests have been simulated just changing the initial 
conditions in terms of imposed normal stress an· The results of simulations, 
are presented in Fig. 6. The comparison between the experimental results and 
simulations is satisfactory with regard to the evolution of the shear stress ( T) 
versus the tangential displacement of the interface (lit). It can be noted, as 
previously announced, that the value of the maximum shear stress predicted 
for the tests carried out at low levels of normal stress is slightly underesti
mated. This divergence between simulations and the experiments translates 
the effect of an on the value of f.L f (i.e. non-linearity of Mohr-Coulomb failure 
line in the an-T plane for the low values of an)· With regard to the evolu
tion of the normal relative displacement (un) versus the tangential relative 
displacement (ut), it can be observed that the transition from compaction to 
dilatancy reproduced by the model is more gradual than the observed exper
imental response. It should be mentioned, however, that the shapes of the 
experimental curves are rather singular. Indeed, where dilatancy appears (i.e. 
at low normal stress levels), the experimental results also show an extended 
initial phase where the change of normal relative displacement is zero (test 
BS1 with an = 25 kPa), or a very prolonged phase where the rate of nor
mal relative displacement is zero (test BS2 with an = 50 kPa). Although it 
is possible to take into account the effect of an on the mobilisation of dila
tancy at the interface (effect of the ratio= in equation (20)), the dilatancy 

Po 
predicted by the model is sligthly underestimated. In order to validate the 
model in the case of strong dilatancy at the interface we have examined the 
results of two interface tests presented by Tabucanon and Airey (1992). The 
tests were performed in a modified direct shear box on samples of siliceous 
Sydney sand. This sand has physical characteristics similar to Fontainebleau 
sand (Table 3). The tests were carried out at constant normal stress an = 
150 kPa; the authors considered two different densities, namely ID = 0.15 
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(eo = 0.790, test A) and ID = 0,96 (e0 = 0.580, test B). The complete set 
of parameters used for the numerical simulations has been obtained from the 
experimental results of test A; they are presented in Table 4. For the value of 
ecr, due to the lack of available experimental results, we have taken the value 
obtained for Fontainebleau sand. This choice seems to be licit based on the 
similarity between the granulometric characteristics of the two sands. Since 
the results of isotropic (or oedometric) compression tests on Sydney sand 
were not available, we have assumed kn = 2 kt. The comparison between the 
experimental results and simulations are presented in Fig. 7. The predictions 
are again satisfactory, particularly for the volumetric deformations. As a con
cluding remark, the capability of the model to capture the softening phase 
present in test B is emphasised. 

5.2 Test at constant volume 

In order to check the ability of the model on different stress paths, the results 
of interface tests at constant volume between Fontainebleau sand and rough 
metal plate are now analysed. These tests have been carried out on a ring 
simple shear apparatus (Lerat et al. 1997). Three test results corresponding 
to initial external radial pressure of 100 kPa (test CS1), 200 kPa (test CS2) 
and 400 kPa (test CS3) are simulated. The sand samples tested have an ini
tial density index ID of about 0.49 (e0 = 0.743). The numerical computations 
have been performed assuming the set of parameters given in Table 5, de
termined from the results of test CS1 at CTni = 100 kPa. It can be seen that 
the computed responses match well the observed experimental results (Fig. 
8). With regard to test CS3 a divergence between the predicted value of the 
shear stress at failure and the one obtained in the test can be observed. It is 
believed that the restrained contractancy due to grain crushing (local reduc
tion of CJ n) for the higher level of normal (radial) stress acting on the interface 
could be at the origin of this difference. This aspect is not captured by the 
proposed model and could form the object of a further enhanced version. 

6 Conclusions 

This work addresses the description of the mechanical behaviour of granular 
soil-structure interfaces. To this purpose, the formulation of an elasto-plastic 
model able to describe the main features of the behaviour of the interface is 
proposed. The model allows for the description of the basic aspects identi
fied in the interface tests, such as: hardening/softening mechanical response, 
phase transformation and critical state. It also includes the effect of the nor
mal stress level on the mobilised dilatancy at the interface. 
As formulated the model allows for progressive refinements in order to ac
count for various features of the interface behaviour. The resulting small set 
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of parameters, which are thirteen in the complete version, is easy to found 
and parameters have a direct meaning. A methodology for their determina
tion has been briefly outlined. 
The validation of the proposed approach has been carried out on the experi
mental results of interface tests achieved by means of a modified direct shear 
box and of a ring simple shear apparatus. The model provides satisfactory 
predictions of the behaviour of the interface, for tests at imposed constant 
normal stress as well as for tests at imposed constant volume. However, the 
proposed model could be enhanced to account for damage (grain crushing) 
and for the effect of the normal stress level on some mechanical characteris
tics of granular materials (for example, friction angle at failure). 

7 Tables and figures 

Table 1. Physical characteristics of Fontainebleau sand 

Table 2. Constitutive parameters used for the numerical study of interface tests 
between Fontainebleau sand and rough metal plate (Rn = 1) carried out on a 
modified direct shear box 

"(dmin(kN/m 

Table 3. Physical characteristicc of Sidney sand (Tabucanon and Airey 1992) 
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Table 4. Constitutive parameters used for the numerical study of interface test 
between Sydney sand and rough metal plate (Rn = 0.25) carried out on a modified 
direct shear box 

Table 5. Constitutive parameters used for the numerical study of interface test 
between Fontainebleau sand and rough metal plate (Rn = 0.25) carried out on a 
ring simple shear box 

Tangential dlsplix:ement. u 1 

(a) 

: 
.t:: ., 

;; 
lJ 

Norm<~! .stress, 0'11 

(b) 

Fig. 1. Yield and failure of the interface: (a) typical mechanical response of interface 
during loading; (b) deviatoric hardening/softening mechanisms of the yield surface 
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Fig. 8. Comparison of model predictions and experimental results: interface tests at 
constant volume carried out on a ring simple shear box (Fontainebleau sand-rough 
metal plate) 



www.manaraa.com

156 V. De Gennaro, R. Frank 

7. Boulon M. 1991. Le comportement d'interface sol-structure: aspects 
experimentaux et numeriques. Rev. Franr;. Geotech. 54: 27-37. 

8. Boulon M. and Jarzebowski A. 1991. Rate-type elastoplastic approaches for soil
structure interface behaviour: a comparison. Proc. Camp. Methods and Adv. in 
Geomech., Beer, Booker and Carter (eds), Balkema, Rotterdam: 305-310. 

9. Boulon M., Garnica P. and Eissautier M. 1995. Simulation numerique 3D du 
frottement sol-inclusion en chambre d'etalonnage par equations integrales aux 
frontieres. Rev. Franr;. Geotech., 73: 36-52. 

10. Boutrif A. 1993. Mesure du comportement d'interface sol-structure a Ia boite de 
cisaillement direct annulaire et modelisation. These de Doctorat de l 'Universite 
Joseph Fourier - Grenoble I, Grenoble, France. 

11. Brumund W.F. and Leonards G.A. 1973. Experimental study of static and 
dynamic friction between sand and typical construction materials. Journal of 
Testing and Evaluation 1 (2): 162-165. 

12. Day R.A. and Potts D.M. 1994. Zero thickness interface elements. Numerical 
stability and application. Int. Journ. Num. Anal. Meth. Geomech., 18: 689-708. 

13. De Gennaro V. and Pande G.N. 1998. A model for the behaviour of the soil
structure interface. Proc. 4th Europ. Conf. on Num. Meth. in Geotech. Eng., 
Udine, Italy: 453-462. 

14. Desai C.S., Zaman M.M., Lightner J.G. and Sirirwardane H.J. 1984. Thin-layer 
element for interfaces and joints. Int. J. Numer. Anal. Methods Geomech., 8: 
19-43. 

15. Desai C.S., Drumm C. E. and Zaman M.M. 1985. Cyclic testing and modelling 
of interfaces. J. Geotech. Engrg. Div., ASCE, 111 (GT6): 793-815. 

16. Desai C.S. and Fishman K.L. 1991. Plasticity-based constitutive model with 
associated testing joints. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 28 
( 1): 15-26. 

17. Desai C.S. and Ma Y. 1992. Modelling of joints and interfaces using the 
disturbed-state concept. Int. J. Numer. Anal. Methods Geomech., 16: 623-653. 

18. Fakharian K. and Evgin E. 1996. An automated apparatus for three
dimensional monotonic and cyclic testing of interfaces. Geot. Testing J. ASTM, 
19 (1): 22-31. 

19. Gens A., Carol I. and Alonso E.E. 1990. A constitutive model for rock joints: 
formulation and numerical implementation. Computers and Geotechnics 9: 3-
20. 

20. Ghaboussi J., Wilson E.L. and Isenberg J. 1973. Finite element for rock joints 
and interfaces. J. of Soils Mech. and Found. Div., ASCE, 99 (SM10): 833-848. 

21. Goodman R.E., Taylor R.L. and Brekke T.L. 1968. A model for the mechanics 
of jointed rocks. J. of Soils Mech. and Found. Div., ASCE, 94 (SM3): 637-659. 

22. Goodman R.E. and Dubois J. 1972. Duplication of dilatancy in analysis of 
jointed rocks. J. of Soils Mech. and Found. Div., ASCE, 98 (SM4): 399-422. 

23. Hassan A.H. 1995. Etude experimentale et numerique du comportement lo
cal et global d'une interface sol granulaire-structure. These de Doctorat de 
l'Universite Joseph Fourier - Grenoble I, Grenoble, France. 

24. Hoteit N. 1990. Contribution a !'etude du comportement d'interface sable
inclusion et application au frottement apparent. These de Doctorat de l 'Institut 
National Polytechnique de Grenoble, Grenoble, France. 

25. Ladanyi B. and Archambault G. 1970. Simulation of shear behaviour of a 
jointed rock mass. Proc. 11th Int. Symposium on Rock Mech., AIME, New 
York: 249-260. 



www.manaraa.com

Elasto-plastic Modelling of Soil-structure Interfaces 157 

26. Ladanyi B. and Archambault G. 1972. Evaluation de Ia resistance au cisaille
ment d'un massif rocheux fragmente. Proc. 24th Int. Congress on Rock Mech., 
Sec. BD, Montreal: 249-260. 

27. Leong E.C. and Randolph M.F. 1991. Modelling of sliding behaviour at rock in
terfaces. Proc. Camp. Methods and Adv. in Geomech., Beer, Booker and Carter 
(eds), Balkema, Rotterdam: 365-369. 

28. Leong E. C. and Randolph M.F. 1994. Finite element modelling of rock-socketed 
piles. Int. J. Numer. Anal. Methods Geomech. 18: 25-47. 

29. Lerat P. 1996. Etude de !'interface sol-structure dans les milieux granulaires 
a !'aide d'un nouvel appareil de cisaillement annulaire. These de Doctoral de 
l'Ecole Nationale des Pants et Chaussees, Paris, France. 

30. Lerat P., Schlosser F. and Vardoulakis I. 1997. Nouvel appareil de cisaillement 
annulaire pour !'etude des interfaces materiau granulaire-structurc. Proc. 14th 
Int. Conf. Soils Mech. and Found. Eng., Hambourg, vol. 2: 363-366. 

31. Patton F.D. 1966. Multiple modes of shear failure in rock. Proc. 1st Int. Con
ference of Rock Mechanics, vol. 1, Lisbon: 509-513. 

32. Pietruszczak S. and Niu X. 1992. Numerical evaluation of bearing capacity of 
a foundation in strain softening soil. Computers and Geotechnics 13: 187-198. 

33. Pietruszczak S. and Niu X. 1993. On the description of localized deformation. 
Int. J. Numer. Anal. Meth. Geomech., 17: 791-805. 

34. Plytas C. 1985. Contribution a !'etude experimentale et numerique des inter
faces sols granulaires-structures. Application a Ia prevision du frottement lateral 
des pieux. These de Doctoral de l 'Institut National Polytechnique de Grenoble, 
Grenoble, France. 

35. Poorooshasb H.B. and Pietruszczak S. 1985. On yielding and flow of sand; a 
generalized two-surface model. Computers and Geotechnics, 1: 33-58. 

36. Potyondy J.G. 1961. Skin friction between various soils and construction ma
terials. Ceo technique 11 ( 4): 339-353. 

37. Rouainia M., Boulon M. and Garnica P. 1992. Modelling and validation of a 
non linear soil-structure interface behaviour for pile problems. Proc. Int. Symp. 
Num. Models in Geomech. (NUMOG IV), Swansea, UK: 223-230. 

38. Sadrnejad S.A. and Pande G.N. 1989. A multilaminate model for sands. Proc. 
Int. Symp. Num. Models in Geomech. (NUMOG III), Niagara Falls, Canada: 
17-27. 

39. Sharma K.G. and Desai C.S. 1992. Analysis and implementation of thin-layer 
element for interfaces and joints. J. of Engin. Mechanics, ASCE 118 (12): 2442-
2462. 

40. Shahrour I. and Rezaie F. 1997. An elastoplastic constitutive relation for soil
structure interface under cyclic loading. Computers and Geotechnics, 21: 21-39. 

41. Tabucanon J. T. and Airey D. W. 1992. Interface tests to investigate pile skin 
friction in sands. Research Report No. R662, University of Sydney: pp. 14. 

42. Tabucanon J. T., Airey D. W. and Poulos H. G. 1995. Pile skin friction in sands 
from constant normal stiffness tests. Geot. Testing J. ASTM, 18 (3): 350-364. 

43. Taylor D.W. 1948. Foundamentals of soil mechanics. John Wiley and Sons, 
New York. 

44. Tejchman A. and Tejchman J. 1990. Scale effect in pile model tests. Archiwum 
Hydrotechnicki XXXVII: 97-126. 

45. Tejchman J. and Wu W. 1995. Experimental and numerical study of sand-steel 
interfaces. Int. Journ. Num. Anal. Meth.Geomech., 19: 513-536. 



www.manaraa.com

158 V. De Gennaro, R. Frank 

46. Uesugi M. and Kishida H. 1986. Influential factors of friction between steel and 
dry sands. Soils and Foundations, 26 (2): 33-46. 

47. Uesugi M., Kishida H. and Tsubakihara Y. 1988. Behavior of sand particles in 
sand-steel friction. Soils and Foundations, 28 (1): 107-118. 

48. Wernick E. 1978. Skin friction of cylindrical anchors in non-cohesive soils. Sym
posium on Soi Reinforcing and Stabilising Techniques, Sydney, Australia: 201-
219. 

49. Yoshimi Y. and Kishida T. 1981. A ring torsion apparatus for evaluating friction 
between soil and metal surface. Geot. Testing J. ASTM, 4 (4): 145-152. 

50. Zong-Ze Y., Hong Z. and Guo-Hua X. 1995. A study of deformation in the 
interface between soil and concrete. Computers and Geotechnics, 17: 75-92. 



www.manaraa.com

Neural-Fuzzy Modelling to Analyse 
Complex Geotechnical Systems 

Paola Provenzano 

Dipartimento di Ingegneria Civile 
Universita di Roma "Tor Vergata" 
00133 Roma, Italia 

Abstract. Engineers have always been aware of uncertainties in analysis of geotech
nical system complexity, related to soil inherent variability, site conditions, con
struction tolerance, and failure mechanisms. Geotechnical and structure design deal 
with these uncertainties by heuristic and expertise knowledge using input data that 
fall in the category of non-statistical uncertainties. In this article, an expert system 
based on an Artificial Neural Network with fuzzy input vectors is suggested for 
settlement prediction of shallow foundations in cohesionless soils. 

1 Introduction 

In many applications, the geotechnical systems under study are too com
plex to be described by classical mechanical model. On the other hand, very 
complex models cannot be proposed, for the difficult to assign correct val
ues to each parameter. Deterministic procedures adopt usually conservative 
design values, but for most structures, even for critical facilities, use of this 
values cannot be economically justified. The probabilistic approach, in which 
all uncertainties are considered random, has a sophistication that is often in 
stark contrast to the crudeness of data which engineers must work with. An 
alternative approach is given by the adaptive inference systems that derive 
relations between the system variables by a learning process from available 
information, numerical and linguistic. In this way, they work to do resem
bles that is in an experimental study. It means that the single analysis is 
a simulation of the reality and the problem to be solved concerns with the 
exploiting of the maximum of information from these trials [2]. Promising 
inference systems are suggested by the fuzzy logic theory, able to deal with 
non-random uncertain variables and by the Artificial Neural Network theory 
that, it is well known [5], can approximate any non linear function arbitrary 
well over a compact interval. 

2 Fuzzy sets and operations 

As a crisp set A is defined by a characteristic function, declaring which el
ements x of a given universal set X are members of A and which are not, 
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a fuzzy set A is defined by a membership function defining the membership 
grade of each element in the set. Such a function maps the elements of X into 
real numbers in [0,1]. 

A: X--? [0, 1] (1) 

The value llA(x)=O means that an object xis not a member of the set A, 
and the value 1 indicates that x entirely belongs to A. 

Crisp Value Crisp Set 

:,,, L-_--_-_._--_--_--..... -_--_-· ..... 1 __. _ __.__.,.., ~:),0 ----- ! I 

0.9 1.5 0.9 1.5 
F 

(a) (b) 
Fu:zzy Set 

()'OS) I 

(c) (no) 0 '-----"'"----'---'----'--""---.,.. F 
0.9 1.5 

Fig. 1. Crisp versus fuzzy definition of slope instability 

Figures (1) illustrate the difference between fuzzy set and "crisp" set 
membership, using different way to define the safety factor of a natural slope. 
It is the ratio 7] = t 1 /t,, of shearing resistance to the shearing mobilized 
by the disturbing forces. In limit equilibrium condition, with no uncertain 
input , is 7] = 1 (fig.l.a) . An ordinary crisp set (fig.l.b ) is able to describe the 
sensitivity of the slope behavior for interval inputs, while a fuzzy set (fig.l.c) 
is more useful to describe the stability condition for uncertain non random 
parameters. Note that an ordinary crisp set can be viewed as special case of 
fuzzy set with only two allowed membership valueSIJA (x)=O or IJA (x)=l. 

If A and B are two normalized fuzzy sets, extension principle [4] allows 
to calculate any operation (*): 

(A* B)(z) = sup min [A(x) , B(y)] (2) 
z = X*Y 
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In this paper, the equation (2) has been traduced by Vertex Method [5]. 
Given a fuzzy set A on X and any number a E [0, 1] (Fig. 2.A), the a-cut is 
o: A = [a, b]. In general, if y=f(x) is a continuous and monotonic function on 
o: A=[a, b], the interval representing B at a particular value of a, o:B, can be 
obtained by: 

o: B = f (a A)= [min (f (a), f (b)), max (f (a), f (b))] (3) 

llU 
! ! 

~ .............. (l"A u 
1.. 

(A) (B) 

Fig. 2. (A) a-level of a fuzzy number ; (B) Type of Frame structure modelled 

3 Artificial neural network 

Artificial Neural Network (ANN) is a computational mechanism able to ac
quire, represent and compute a mapping f (J<., w) from a multivariate space 
of information to another, given a set of data (J<.) representing that mapping. 
It consists of simple computational units, called neurons, which are highly 
interconnected. Each interconnection has a strength that is expressed by a 
number referred to as a weight ( ro). A Multilayer Feed-Forward Neural Net
work has been proposed here [5]. It consists of an input layer, one or multiple 
hidden layers and an output layer. The units in the hidden layer play a key 
role in the internal representation of the input patterns. The input-output 
flow of the network model is determined by the strength of the connections 
and the operation function of the neurons. The operation of a single neu
ron consists in a weighted sum of the incoming signals and a bias term, fed 
through an activation function, F, resulting in the output value of the neu
ron. In an ANN with an hidden layer the output value is mathematically 
expressed as 



www.manaraa.com

162 P. Provenzano 

Yi = F (t W;rF (f VrjXj + Vor) + Wo;) , i = 1, ... , l 
r=l J=l 

(4) 

where± is them x 1 input vector, y is the l x 1 output vector, nis the number 
of neurons in the hidden layer, V and W are the weight factors and Vor and 
w0 ; the bias values of the neurons in the hidden layer and in the output layer, 
respectively. A sigmoidal activation function have been used in this research. 

Considering input and output samples, x; andy;, respectively, a stochastic 
approximation procedure (or training), called backpropagation [4], is used, 
that minimize the risk functional 

l 

Remp = L (F (±;,1Q,12.)- y;) 2 (5) 
i=l 

respect to the parameters 12. and 1Q. 

4 Neuro-fuzzy modelling of soil structure interaction 
cohesionless soils 

In cohesionless soils, soil-structure interaction analysis has motivated pri
marily by the need to limit differential settlements within buildings to avoid 
structural or architectural damage. In this research, a Fuzzy-Neural Net
work method to predict the behaviour of structures built on complex cohe
sionless soils is proposed. The method is based on an ANN to model the 
soil-foundation interaction. The learning process analyses over 200 records 
of building foundations, tanks and embankments settlements on sand and 
gravel. Once validated, ANN is introduced in soil-foundation-sovrastructure 
interaction model. Using fuzzy sets to define vague and ambiguous variables, 
the Fuzzy-Neural Network method predicts the system behaviour and quan
tifies the uncertainty of its response. 

The presented soil-structural interaction analysis involves frame struc
tures, divided into elements connected by nodes, founded in granular soils 
(Fig.2.B). Let Qa loading vector with fuzzy coefficients Q;={flQ(x)/x, xE R} 
that includes uncertain loads and boundary conditions. In the same way, any 
uncertain parameter of the analytical problem can be expressed by a fuzzy 
number, from the available information. By the extension principle, for a 
linear elastic structure, the solving equation system is: 

~s~s = ~ + Rsf 
KtDJ = Rfs + Rfs' (6) 

jjt = jjt ( Rfs') 
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where (fig.3) Ksand k 1 are the fuzzy stiffness matrices of superstructure 
- = 

and foundation, Q is the fuzzy load vector, R81 , R18 and R18, , Rs'f are the 
fuzzy interaction strength vectors between superstructure ad foundation and 
between foundation and soil, respectively. D s, f> f and D s' are unknown fuzzy 
displacements of the system nodes. 

The third equation of the system ( 4) is the foundation settlement-predicting 
model: since the soil-structure interaction analysis is to be considered within 
serviceability limit states, soils exhibit non-linear behaviour even at small 
strain. Different levels of fuzziness can be used combining th uncertain in the 
model and in the parameters [5]. 

Q Fuzzification Q 

~ Rsf Rsr 

Rf "''Lfl_ Rrs 

Rrs Rrs 
l ll!!!l 

X ! ! j ! j j l 
I Soil I Rs'f Rs'r I Soil 

Fig. 3. Interaction of components 

5 Statement of the problem and hypothesis formulation 

Soil-foundation interaction analysis assumes the foundation more rigid than 
the superstructure and known applied loads. The foundation geometry, the 
thickness of granular deposit, the blow-counts of Standard Penetration Test 
(N) along borehole and the hydraulic boundary conditions are all known 
variables. Eight variables are chosen to characterise the system (Fig. 4.A): 
breadth (B, [m]), length (L, [m]) and depth (D, [m]) of the foundation , depth 
of water table beneath ground level (Hw , [m]) , thickness of sand or gravel 
layer (H 8 , [m]), average SPT blow-count over the depth of influence (N), 
gross pressure applied at foundation level ( q, [KPa]) and maximum previous 
effective overburden pressure ( O" 'vo, [KPa]). System response is expressed by 
means of the medium foundation settlement value (p, [mm]) . Crisp inter
vals and linguistic variables are used to represent imprecise and uncertain 
knowledge that arises because of soil complexity. 
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Input layer 

B 

(A) (B) 

Fig. 4. (A) Geometry of foundation; (B) Neural Network Architecture 

6 Artificial neural network model estimation 

A feedforward ANN with multilayer perceptron is used [5]. The learning 
algorithm is supervised, based on back-propagation procedure. As shown in 
fig.4.B, the developed ANN has an input layer X = [B, L, D, Hw, H 8 , N, q, a~0 ] 

with m=8 neurones, a first hidden layer with n1 =8 neurones, a second hid
den layer with n2 =5 neurones and an output layer with 1=1 neurone. The 
eight neurones of the input layer correspond to independent variables, the 
neurone of output layer corresponds to settlement dependent variable (p). 
Neurones of each hidden layers have been chosen by an iterative procedure 
[7]. A summary of measured settlement and of its estimate made by using 
the mentioned ANN is given in the figure (3). The results are compared with 
those obtained by empirical [3] and analytical methods [1 ], assuming as a 
basic variable R=p8 / Pm, that is the ratio between simulated and measured 
settlement. 

7 Example 

This case history was presented in Maugeri et al. [4]. The analyzed building is 
part of a residential area located in Fondachello, a seaside village in Mascali 
(Catania, Italy). A laboratory and in situ testing program was performed to 
evaluate the soil proprieties. The results of standard penetration tests (N) 
are pictured in fig. 6.a. 

In order to consider the uncertain compressibility of soil, it is possible 
define the membership function of N variable (Fig.6.b). For the input layer, 
with fuzzy variable (IV) and crisp variables (B, L, D Hw), the ANN is able 
to predict medium settlements, and their variation intervals , for different 
membership grades (tab.1). 

The results are compared with that obtained by current methods (Fig. 7). 
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8 Conclusions 

The aim of this research is to focus the role of an expert system, based on 
a fuzzy-neural network, to forecast displacement of shallow foundations in 
granular soils, keeping into account non-linear effects. Using of fuzzy num
bers is effective to deal with soil parameter uncertainty and to calculate the 
extreme values of a structure response to all possible boundary condition 
combinations. A procedure to analyze soil-structure interaction, based on 
this Fuzzy-Neural Model is able to be extended also to loading uncertainties. 
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Fig. 6. (A) N s PT profiles; (B) Membership function of N variable 



www.manaraa.com

166 P. Provenzano 

Neural-fuzzy prediction Monitoring 20 

q ?? N w,[mm] Wm Wm Wm 

min max verage 
e 
~ 

0 5.9 1.21 
0.5 12.0 1.28 

c. 
chmcnmann. 

16.24 I 15.1 1.33 0.8 2 1.48 16 

I 24.9 1.79 
0.5 28 2.19 
I 34.1 5.09 
0 5.9 1.36 

0.5 12.0 !.50 
25.82 I 15.1 1.62 1.5 3 1.94 

12 

I 24.9 2.60 
0.5 28 3.43 
I 34.1 8.78 
0 5.9 1.49 

0.5 12.0 1.70 
32.82 I 15.1 1.88 2 3.4 2.35 

I 24.9 3.32 
0.5 28 4.45 
I 34.1 6.15 
0 5.9 1.69 

0.5 12.0 2.03 
4 

42.59 I 15.1 2.29 2.8 4 3 

I 24.9 4.45 
0.5 28 6.15 
I 34.1 15.18 

0 +---~--~--~---.--------~--~ 

10 15 20 30 q[KPa[ 40 45 

Fig. 7. Settlements predicted by fuzzy-ANN method and some classical methods 
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1 Introduction 

The mechanical behaviour of thermoplastics with glassy amorphous regions 
is characterised by a strong dependence in temperature and strain-rate. It 
seems thus relevant to take a thermomechanical point of view into account. 
As these materials may also exhibit both tough dissipation and strong strain 
localisation, we have decided to use two complementary local techniques to 
study their response. 

Infrared thermography can constitute a highly reliable means to moni
tor temperature maps during the deformation process of flat samples. The 
temperature and heat distribution within the specimen obeys the diffusion 
equation and the heat sources can be locally estimated thanks to the process
ing of these thermal data. 

This determination is a first step, using energy balances, to set up consti
tutive thermomechanical equations. To achieve such evaluations, the evolu
tion of mechanical data (strain, strain-rate, stress, ... ) is also to be detected. 
During tensile tests, these variables are often supposed to remain homoge
neous and their evolution is estimated through rather "global" measurements. 
In order to analyse the kinematics fields on the same level of space resolution 
than the thermal ones, we have chosen to develop a digital image correlation 
technique [9]. 

Results obtained on a semicrystalline thermoplastic polymer (PolyAmide) 
are presented in this paper. Quasi-static tensile tests, at constant stroke ve
locity, were performed at room temperature (i.e. below the glass transition 
temperature) on a MTS hydraulic machine. The conventional stress-strain 
curve is characterised by a yield point and a fall in load At this stage a neck 
has formed and its shoulders propagate along the gauge part of the sample. 
Two optical sensors with different characteristics (infrared- visible) are set by 
each side of the machine. We first describe the image processing techniques in 
the infrared spectrum (temperature charts) and for the visible wavelengths 
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(mechanical fields). And, when the deformation process becomes heteroge
neous, the analysis of the material behaviour is proceeded by the simultane
ous use of these two imaging techniques. 

2 Thermal and calorimetric analysis 

2.1 Experimental set-up 

The infrared thermography set-up involves a mono-detector camera (Agema 
880 SWB, short wave) which records thermal images (256 x 180 pixels) of 
the flat sample during the loading. 

Using the heat equation, the specific heat sources induced by the straining 
are related to temperature evolutions. For quasi-static tests, assuming an 
isotropic conduction and neglecting the terms of convection, this relation can 
be written as [3]: 

(1) 

where p, C, Tth and k stand respectively for the density, the heat capac
ity, a time constant characterising the lateral heat exchanges, and the heat 
conductance of the material. The variable () represents the deviation from the 
temperature of the reference state. The specific heat sources ( w~h ) can then 
be determined by applying differential operators on the temperature fields 
(time derivative: f.Jjot and spatial derivative: .12 = 82 j8x 2 + 82 j8y 2 where 
x is the sample loading axis, y the width axis). 

2.2 Infrared data processing 

Before any differentiation, the discrete and noisy thermal data are to be fil
tered. Several methods can be implemented [4]. Hereafter, a local least square 
fitting technique has been chosen. The degree of the polynomial is taken equal 
to 2, and the regression reflects that, in the neighbourhood of each pixel, heat 
exchanges by conduction remains locally constant. The Approximation Zone 
size (AZ) affects evidently the data fitting, and is set to optimise the filtering 
efficiency. 
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2.3 Validation of the infrared processing 

Computer generated thermal images related to a given heat sources distribu
tion were created in order to validate the infrared data processing. According 
to our experimental observations, a gaussian white noise (0.1K amplitude) , 
was superimposed to the virtual data. The processing is then applied to these 
images. For 15 x 15 square pixels approximation zones, the speed of the com
putation and the accuracy of the measurement are balanced, as demonstrated 
in Figure 1. 

8 
2.4 

4 

2 
raw data 0 

raw data 
noisy data -4 noisy data 

1.6 

0 50 100 150 200 250 
-8 

0 50 100 150 200 250 
x (pixel) x (pixel) 

Fig. 1. Valida tion of thermal data processing. Temperature profile O(x, 0, to ) and 
related heat sources w~h (x, 0, to) 

3 Strain analysis 

3.1 Experimental set-up 

A C. C. D. camera (Panasonic WV-CP410G) is rooted to the frame of the ma
chine during the test. The image processing is performed afterwards in two 
steps. The displacement field is first estimated, then the strain and strain
rate fields are deduced by differentiation. 

3.2 Speckle data processing 

Displacement field measurement The displacement vector of each point 
is resolved into in-plane and out-of-plane components. The first one is reached 
by a direct correlation computation. A point, say M, is defined by its neigh
bourhood "optical signature" , so-called the Correlation Zone ( CZ) . The po
sition of M ( io, j 0 ) in the "reference" image I 1 is sought inside a Research 
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Zone (RZ) in the "deformed" image ! 2 • Its displacement is associated with 
the couple (k, l) which maximises the intercorrelation function r.p defined by 
[1]: 

cp( k, l) 
(k.I)E[ ~~R.Z{lJ 

CZ/2 CZ/2 

L L h(io + i,jo + j).I2(io + i + k,jo + j + l) 
i=~CZ/2 J=~CZ/2 

CZ/2 CZ/2 CZ/2 CZ/2 

I:: L If(io + i,jo + j). I:: 2:.:: I:J(io+i+k,jo+j+l) 
i=~CZ/2 j=~CZ/2 i=~CZ/2 j=~CZ/2 

(2) 

This discrete intercorrelation function leads to a one-pixel resolution in the 
displacement measurements. In the neighbourhood of r.p discrete maximum, 
a polynomial interpolation achieves a sub-pixel resolution [8]. 

Once the whole displacement vector field has been calculated, the grid is 
upgraded, and the displacement field between a next couple of images can 
be determined: the path of each point on the grid is thus calculated step by 
step. 
This approach enables to keep small strain increments between each couple 
of images, in order to neglect the deformation terms that could be introduced 
following [7,2]. 

Strain and strain-rate computation The differentiation of the displace
ment field allows to compute a whole range of kinematics fields (speed, accel
eration, strain E , strain-rate f: , ... ) [9]. As with the calorimetric processing, 
the noisy experimental data are locally filtered using the same kind of poly
nomial fitting. 

3.3 Validation of the processing 

The algorithms of correlation and differentiation were both tested on several 
analytic examples based on numerically deformed virtual images, pictured in 
classical shooting conditions. As illustrated in Figure 2, the use of 20 x 20 
square pixels Correlation Zones and 25 x 25 square pixels Approximation 
Zones leads to an accurate estimation of strong and weak strain gradients. 

4 Coupling of thermal and kinematics measurements 

The results obtained with these two different techniques in very similar con
ditions [5] - specimen, speed, room temperature, ... - motivate their com
bined use during the same tests as temperature maps and the related material 
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Fig. 2. Dependence of the strain measurement with t he Approximat ion Zone di
mensions in t he case of a heterogeneous strain profile E (x, 0, t 0 ) , (CZ=20 square 
pixels) 

flow are both required to compute the term of convection in the heat equa
tion. Stretching materials with an important heat conduction as metals, at 
strain-rates about 10- 2 s- 1, this term was found to be negligible [6]. But, 
in polymers where the heat conduction is poor, important temperature gra
dients may appear during necking (up to 100 K.m- 1 in PolyAmide 12 for 
strain-rates as low as 10-4 s-1 ). Moreover as shown in Figure 3, the shoulder 
is roughly the only area still straining. 

The tests were performed on standard ISO R527 samples with initial 
gauge length L0 of 60mm and initial cross-section So of 40mm2 . In t he neck, 
the term of convection is up to 20% of the time derivative. The first results 
presented hereafter illustrate the heterogeneity of the thermomechanical fields 
during Poly Amide stretching. 

4.1 Local analysis of necking 

As the gradients remain much more acute along the tensile axis ( x) than 
along the sample width (y), only x-distributions are taken into account . As 
shown in Figure 3, those profiles -w~h(x,O,t) and Exx(x,O,t)- are piled up 
in chronological order with magnitudes represented using a greyscale: the 
horizontal axis stands for time (or homogeneous strain) and the vertical for 
space ( x). The engineering stress-strain curve is also plot ted onto the map 
to connect the global mechanical response with the local one. The abscissa 
then represents the conventional strain ( Ec = vrt / L 0 ) , and the ordinate the 
conventional stress (ac = F/So , where F is the applied load). 
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Fig. 3. Tensile test performed on a PA at constant velocity (vr = 0.05mm.s- 1 ) and 
at room temperature- (a) distribution of heat sources w~h(x, 0, t) in 103 W.m-3 -

(b) distribution of Hencky strain-rate Exx(x, 0, t) in 10-3 s- 1 

At first, the material response is linear. As the stress rises further, it 
becomes more or less anelastic until yielding occurs. Then, the nominal stress 
drops somewhat and extension proceeds easily, with the formation of a neck 
that continuously undergoes growing. 

Those three stages can be noticed on the evolution of heat sources (Figure 
3.a): they are first negative due to the thermoelastic effect, then they increase 
as heat is dissipated. And the heat sources concentrate in the necking region 
when yield occurs. At that stage, strain-rates are also localised (Figure 3.b). 
The heat sources and the strain-rate are negligible outside the necking zone. 
The material behaviour can hardly be withdrawn from the engineering curve 
exhibiting such structural effects: the material local response has to be inves
tigated. 

4.2 Stress analysis 

The main difficulty is here to estimate locally the stress tensor components. 
A method, based on the exploitat ion of the strain dat a and the equilibrium 
equations is presented in [10]. Provided the strain remains homogeneous in 
each cross-section, and the volume constant, the "t rue" stress might be writ
ten as: 

F(t) 
O"xx(x, t) =So exp(Ex10 (X, t )) (3) 

The three stress-strain curves shown in Figure 4 illustrate three differ
ent processing of data monitored during the same test. The first one (G) , 
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reflects the macroscopic response. The others exhibit the "local" responses of 
two virtual extensometers: A is located around the point where necking first 
appears, and B by the point reached by the shoulders of the neck when the 
test is stopped. Natural strain-rates are also plotted on the same graph. 
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Fig. 4. CTxx- Ex x (full line) and Exx- Exx (dotted line) relations for a macroscopic 
strain G from 0 to 55% 

It is well known that considering the true stress-strain curve in spite of the 
conventional one increases strain hardening (see curve G). This is intensified 
handling local data (curve A): the stress increases because the load decrease 
is always balanced by the section reduction. Between the neck inception and 
its subsequent propagation the strain-rate increases tenfold. When the neck 
travels out of the gauge of extensometer A, the strain-rate vanishes. 

The response of extensometer B is similar until the neck onset. Then the 
material unloads and it won't strain anymore until the shoulder reaches it. 
Every other point has a similar behaviour, which is more or less delayed by 
the neck displacement time. So the whole straining process is concentrated 
in the vicinity of the neck shoulders. 
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5 Conclusions 

This work represents the very first step to proceed energy balances during 
the deformation of materials undergoing necking. The local material behav
iour could be more accurately analysed by the combined use of infrared and 
speckle techniques, which will be helpful to deduce the nature of the different 
mechanisms induced by the material deformation. 

In the particular case of PolyAmide, strain-rate and heat sources are con
centrated in the neck shoulders. Furthermore, the terms of convection are 
shown not to remain negligible as the neck propagates, and they are to be 
taken into account in the heat equation. 
Our objective is now to define a local identification method of the material 
behaviour despite the possible strong heterogeneity of the thermomechanical 
fields. 
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Abstract 

A delamination model for laminated composites is proposed. A damage vari
able takes into account the degradation of the adhesive properties of the 
interfaces. It is described by a nonsmooth, nonconvex functional [1]. 

It must be emphasized that this model permits to recover, mathemat
ically, the fracture mechanics theory and, furthermore, to generate various 
regularized models, each of them with different mechanical meanings. These 
regularized models correspond to approaches based on specific interface con
stitutive laws. 

Numerical results for the regularized problem applied to a laminated beam 
and to the drilling of a composite laminated plate are presented. They are ob
tained using finite elements and a elastic predictor-damage corrector method. 

The results for the beam shows a good agreement with the analytical 
solution [1] [2]. 

Both models, the nonsmooth one and the regularized one, are used to 
study analytically the classical double cantilever beam specimen. This per
mits to predict the external loads leading to delamination in pure mode I or 
pure mode II [2]. 

From a mathematical point of view, proof of the existence of a solution 
of both problems is given [3]. 
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Abstract. We present some recent tests on marbles performed using a high sen
sitivity dilatometer. Marble permanent dilatation consequent to thermal cycles is 
correlated with a microstructural damage, usually referred to as granular deco
hesion, observed in marble monuments exposed to rigid climates, of which Arval 
Aalto's Finland Hall in Helsinki is a paradigmatic example. 

1 Introduction and practice 

My personal experience, corroborated by various contribution discovered in 
the Literature, is that marble tends to deteriorate when exposed to rigid 
climates. To this respect, paradigmatic is the case of Arval Aalto's Finland 
Hall in Helsinki, one of the symbols of Finland. Just a few years after the 
building completion, the white marble panels of the fa~,;ade showed a tendency 
towards concave bowing so that, just before the cladding was replaced in 1998, 
the borders protruded outwards up to 10 em (Figure 1a). 

a b 

Fig. 1. Finland Hall fa<;ade panels (June 1998) , with evidence of bowing of the 
marble panels (a), and corresponding micrograph of the constituent marble (b) 



www.manaraa.com

178 G. Royer Carfagni 

An accurate analysis with a scanning electron microscope was performed 
in order to investigate, at the microscopic level, the causes of bowing [4]. One 
of the main conclusions of this research was that chemical attack was respon
sible only of a superficial degradation, causing the formation of a patina and 
the consequent loss of brightness of the marble panels. X-ray examinations 
confirmed that significant traces of chemical agents were not present at a few 
tenths of millimeter depth from the outer surface. 

The microscopic appearance of the inner portion of the marble slab is 
represented in Figure 1 b. Marble may be considered a sintered composite of 
calcite crystal granules and in Finland Hall's fa<;ade they appeared almost 
completely detached one from the other. Hardly any traces of transgranular 
cleavage fracture could be found, but it simply looked as if the grain cement
ing material had been gradually destroying. Because of this peculiarity, this 
type of damaged is usually referred to as granular decohesion. It represents 
the common denominator to other similar cases of marble-panel bowing, oc
curred also in recent times. 

The reason for such a particular deterioration are not completely clear 
yet. Possible explanations in the Literature essentially call for three differ
ent possible causes: i) the chemical-physical attack of sulfates and chlorides 
[5]; ii) the mechanical action of soluble salts which, penetrating in a solu
tion, expand when the solvent evaporates and open existing cracks [1]; iii) 
thermal variations, which may be responsible of internal stress [3]. Particular 
hygrometic conditions may have a synergetic effect with the other causes. 

My personal opinion is that i) and ii) are of importance only at the super
ficial level, whereas iii) seems to be the leading factor. Reasons for this con
clusion can be explained by an elementary model. Calcite crystallizes in the 
rhombohedral form and, as a result of this asymmetry, not only its elasticity 
but also its thermal expansion is strongly anisotropic in character. For ex
ample, the coefficient of thermal expansions varies from 25·10- 6 oc-l in the 
direction of the crystallographic c-axis to -5·10- 6 0 c-l (a negative value) 
at right angle to that. Consequently, temperature variations, even when uni
formly distributed in the specimen, may provoke an incongruent deformation 
when, as in marbles, the calcite grains are randomly oriented. It results that 
even a few degrees' temperature increase can produce a self-equilibrated state 
of stress that can overcome the resistance of the grain bonding. The results 
of a qualitative model [3], corroborated by more sophisticated FEM simula
tions assuming a cohesive softening constitutive law for the interface contact 
forces [2], confirm that the most dangerous states of stress occur at the grain 
borders, especially in proximity of the texture nodes. This explains the inter
granular rather than transgranular character of fractures, even not invoking 
the fact that the strength of the interface bonding is, presumably, less than 
the strength of calcite itself. 
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Of course, granular decohesion is always accompanied by volume increase. 
Marble bowing can thus be explained assuming a gradient of the decohesion 
level through the slab thickness. 

2 Thermal expansion of marble 

The reasons why the granular-decohesion level should vary through the slab 
thickness may be numerous and different in type. For example, as confirmed 
by careful measurements, temperature may vary between the inner and outer 
surface of the fa<;ade due to the building internal heating; differences in the 
humidity level, also confirmed by measurements, might as well play an im
portant role. 

In order to assess whether the measured difference in temperature and 
moisture might be sufficient to provoke bowing, a series of tests was per
formed using a high-sensitivity dilatometer, able to monitor the expansion 
of marble while varying its temperature. Since granular decohesion implies 
volume increase, the permanent dilatation may represent an index of the 
amount of damage produced. 

Different qualities of marbles were considered. Figure 2 shows the re
sults for an A-type marble (for convenience, here commercial names have 
been substituted by letters), the same used for the replacement of the fa<;ade. 
Specimens were subjected to quasi-static thermal cycles varying from approx
imately -50° C to +55° C (such values are not too far from the temperature 
excursion measured at the top of the roof of Finland Hall, during seasonal 
changes) and their dilatation continuously recorded by the experimental ap
paratus. 

Five different phases can be recognized in the material response. The 
first one, referred to as (a), corresponds to the first temperature increment, 
from t=+20° C (room temperature) to t=+55° C. What should be noticed 
is the superlinear growth of thermal strain, which should be compared with 
the slope of the straight line also drawn in the Figure, corresponding to the 
theoretical average dilation of pure calcite (a=12·10-6 o c- 1 ). The greater 
expansion of the composite with respect to the component can be attributed 
to the development of cracks. SEM investigations show that these are trans
granular in type. Moreover, the analysis of the simple model discussed in 
[2], shows that the transgranular cracking is very likely to be accompanied 
by the relative sliding of the grain borders, in order to accommodates the 
incongruent deformation of the grains themselves. 

The cooling stage can be conveniently distinguished into three branches: 
phase (b), from t=+55° C to t=+30° C; phase (c), from t=+30° C to t=-40° C; 
phase (d), from t=-40°C to t=-50°C. The main difference between (b) and 
(c) is that the graph in (b) is pseudo-horizontal, whereas the beginning of (c) 
is indicated by a sudden change in the slope. This can be explained assuming 
that the frictional contact among the grains prevents an instantaneous re-
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A-type marble. Dllatometric tests 
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Fig. 2. Average strain as a function of temperature for A-type Marble. First and 
second cycle 

covery of the strain. Reverse sliding starts only at the beginning of phase (c) 
and then gradually slows down, as logically expected , when the temperature 
is further decreased. This may be a confirmation that the dilatation accu
mulated during phase (a) should be, at least partially, attributed to sliding 
of the grains. The distinguishing character of phase (d) consists in the fact 
that, lowering the temperature beyond a certain limit, the material expands 
rather than shrinking further. This phase can be correlated with the breaking 
of intergranular bonds subsequent to the incongruent granular contraction at 
low temperatures. We observe in passing that the aforementioned model of 
[2] suggests that tensile stresses at the grain borders are greater for negative 
(temperature decrease) rather than for positive temperature variations, for 
the same temperature interval. This may explain why marble deterioration 
is more pronounced in cold rather than warm climates. 

Finally, if at this point temperature is increased again, the material starts 
to expand once more, entering phase (e). The distinguishing character of (e) 
is that the slope of the corresponding graph is almost parallel to that of phase 
(b) , an evident sign, in our interpretation, of the role played by friction. Phase 
(e) ends at tc::='+30° C. It is important to notice that if the cycle had stopped 
at room temperature (t=+20°C), marble would have shown a significant 
permanent dilatation. 
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In further cycles the strain follows a similar characteristic trend, where 
all the five aforementioned phases can again be recognized. A few comments 
are however necessary. First of all, the slope of the graphs referring to phases 
(b) and (e) goes slowly increasing, an indication that the friction coefficient 
diminishes with ongoing cycles, probably do to the smoothening out of the 
contact surfaces. Secondly, the beginning of phases (a), characterized by su
perlinear growth of strain with temperature, is shifted rightwards with on
going cycles. For example, it was around 33° C in the 2nd cycle; it becomes 
around 42° C at the gth cycle. What is even more important is that, as it 
is clear also from Figure 2, the volume increase occurring in phases (d) di
minishes with cycling. This is a characteristic of ongoing damage. The higher 
is the number of thermal cycles the specimen has undergone, the lower is 
the number of bonds that can be broken if a new cycle is performed. In 
fact, roughly speaking, if the weakest bonds have already been broken in the 
previous history, the strongest bonds are the ones that remain active. 

One-sided thermal variations may as well produce a permanent dilatation. 
Figure 3 represents, for example, the response of the same A-type marble 
when its temperature is varied from +20°C to -35°C (the two pictures refer 
to cycles 1-2 and 4-5 respectively). Again, similarly to phase (d) in Figure 
2, we notice a characteristic expansion when the temperature is decreased 
beyond a certain limit . However, such contributions decreases very quickly 
at each cycle, as Figure 3b confirms. These experiments show that, in gen
eral, two-sided thermal conditioning may be more dangerous than one-sided 
variations. 

A-lypo. Dllolometrtc t .. t A typo. DllatometJiclaat (lalap) 
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Fig. 3. Average strain as a function of average temperature for A-type marble. 
Thermal cycles between t = +20°C and t = -35°C. Cycles n . 1-3 (a) and n. 4-6(b) 

It is also important to mention that the marble response may show re
markable anisotropy. Figure 4 shows, for example, the behavior of the same 
quality of marble when the average strain is measured in a direction at right 
angle with respect to the one considered before. Despite there are similarities 
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with Figure 2, now the distinction among the aforementioned five phases (a)
( e) is less clear than before. Such a noteworthy difference is due to t he fact 
that, in general, there are directions where the orientation of the grains is 
statistically more pronounced so that also the marble response is influenced 
at the macroscopic level. 
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Fig. 4. Average strain vs. temperature for A-type Marble. Same material as in 
Figures 2 and 3 but specimens rotated 90°. Thermal cycles between t = - 50°C 
and t = +55°C. Cycles n. 1-2 (a) and n. 4-5 (b) 

In order to investigate the influence of moisture, wet sample were also 
tested. The diagrams for t he same A-type marble, with specimens carved 
in the very same direction as in Figures 2 and 3, are reported in Figure 5. 
What should be noticed here is the first phase, again referred to as phase (a), 
which produces a much larger dilatation than for the dry sample in Figure 2. 
Correspondingly, also the dilata tion a t very low temperatures, called again 
phase (d), is much less than in Figure 2. This is an evidence that the effect 
of humidity is that of facilitating the relative sliding of the grains. In rough 
words, we may say that humidity acts as a lubricant. 

3 Applications and conclusions 

The forthcoming deductions are necessarily conjectural at this time, but it 
is expected that at least some of the questions mentioned will be clarified 
by further studies. In any case, what seems to be confirmed is that thermal 
cycles may produce the permanent dilation of marble. Figure 6a shows a 
SEM photograph of an inner portion of marble having undergone thermal 
cycles. In this picture it is evident the intergranular nature of fracture and 
t he similarity with Figure lb. 

In summary, we can affirm t hat thermal variations can produce granu
lar decohesion similar to that observed in Finland Hall fac;ade. This is a very 
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a b 

Fig. 6. Intergranular fractures in marble having undergone thermal cycles (a). 
Ttansgranular fractures in marble broken in bending (b) 

important distinguishing character. If, for example, marble is broken in bend
ing, the resulting fracture surfaces appear as in Figure 6b, i.e. transgranular 
fracture is dominating. This is because bending produces tensions on a wide 
portion of the specimen, whereas tensile stresses caused by thermal varia
tions are concentrated at very small portions of the grain, and are the most 
dangerous at the interfaces. 

In this study, we have also evidenced the anisotropy of marble response 
(Figure 4) and we have discovered the effects of humidity, which acts as a 
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lubricant and may accelerate the accumulation of permanent strain (Figure 
5). It is very probable that differences in the thermo-hygrometric conditions 
between the inner and the outer surface of the fa<;ade may be responsible of a 
different dilatation of the inner and outer material fibers. This would explain 
the bowing represented in Figure la. 

Measuring the permanent dilatation produced by thermal cycling may 
also be a an appropriate test to assess the vulnerability of different marble 
qualities . Figure 7 represents, in semi-logarithmic scale, the measured perma
nent dilatation as a function of the number of thermal cycles from -50° C to 
+55° C performed on three different marble types. It is noteworthy that such 
graphs are, approximately, represented by straight lines. The slope of each 
graph may thus represent an index of the material attitude towards damage: 
smaller slopes correspond to more durable materials . 
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Fig. 7. Permanent dilatation vs. number of cycles (semi-log scale) for three different 
qualities of marble. Cycles performed between -50°C and + 55°C 

The reason why different qualities behave differently consists in the mi
croscopic arrangement of the crystals. Any marble is composed for more than 
99% of pure calcite, whereas the other accessory components have practical 
no influence on the mechanical properties even if they are responsible of chro
matic effects, likewise the veining. The main difference in the examined mar
ble types consists, at the microscopic level, in the textural arrangement of the 
constituent calcite grains, which may range between the two extreme cases 
termed "homoblastic" and "xenoblastic", schematically represented by thin 
sections in Figures 8a-b, respectively. The first is composed of regular-shaped 
grains, with straight or gently curving boundaries; the second is character-
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a b 

Fig. 8. Typical homoblastic (a) and xenoblastic (b) text ures for two different mar
ble types 

ized by the interlacing of irregular crystals closely fitting along their wavy 
contours. Of course, due to the higher imbrications, granular decohesion is 
certainly more favored in homoblastic than in xenoblastic marbles. Indeed, 
the curve with lowest slope in Figures 7 corresponds to xenoblastic marbles. 
Therefore, this study suggests that the grain texture may be a major quali
fying characteristic for selecting marbles able to endure over the years. 
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1 Introduction 

Since many years, the use of optical methods for studying behaviour of ma
terials has made great strides. These techniques give information to improve 
macroscopic behaviour laws and allow observing initiation and propagation of 
localization phenomena. In the field of civil engineering materials and struc
tures, optical measurements of the displacement field are more and more used 
(stereophotogrammetry [3], for example). On the other hand, infrared ther
mography is not very used to study the behaviour of concretes. For dynamical 
solicitation, it is common to refer of M.P Luong's works [6]. 

This work shows what we are able to obtain in the framework of quasi
static mechanical solicitations imposed on concretes by using digital speckle 
images correlation in whiting light mode and infrared thermography. In this 
paper, we study both Reactive Powder Concrete (RPC) and damaged freeze 
/thaw plain concrete. 

2 Experimental arrangement and studied materials 

2.1 Experimental device 

The experimental set-up uses a tension-compression testing machine (either 
a DARTEC ± 100 kN or a MFL UED40 400 kN) coupled with an infrared 
camera or a CCD video camera. The thermal measures are realized either 
with a camera AGEMA 880 sw (NETD = 0.2°C at 30°C) or with a camera 
CEDIP JADE 3 mw (NETD = 0.025°C at 35°C). An image processing is 
performed in order to filter noisy data provided by the camera. 
For speckle images, we used a CCD video camera PANASONIC WC-CP410. 
The method of measure of the displacement is based on digital images cor
relation techniques. The differentiation of the displacement field is done by a 
local approximation method [10]. 
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2.2 Studied materials 

RPC are ultra-high-strength concretes reinforced with steel fibres [9]. The me
chanical properties are a compressive strength of 200 MPa, a flexural strength 
of 35 MPa and Young modulus around 65 GPa. 

The damaged freeze/thaw concrete is a plain concrete with a classic mix
ture: a granular class of 0-4 mm with water/ cement and cement/sand ratios of 
0.5 and 0.3, respectively. The specimens have been aged by rapid freeze/thaw 
cycles at the Norwegian Building Research Institute [3]. The procedure was 
the ASTM C666. Fourteen cycles were applied with a cooling rate approxi
mately l2°C/h in the limit +5/-l8°C. 

3 Strain localization phenomena occurring during 
tensile test on RPC 200 samples 

The sample is shown in the figure la. The grip setting of the specimen, used 
to assign the tensile loading, is described in the figure lb. The experimental 
results are obtained during monotone tensile tests performed at constant 
cross-head velocity (Vcu = 10-2 mm.s- 1). 

~-------MO~--------~ 

I I I I .. ; .. 
Fig. 1. a Direct tensile specimen - b Grip system 

3.1 Loading/unloading tensile tests 

To represent the entire test in the same figure, we choose to plot the axial 
distribution of the tension component of the strain tensor. Figure 2 presents 
the tension component of the strain tensor of the points located along the 
longitudinal axis (i.e. x 1 axis) for a given loading state (black curve) as a 
function of time (image number). In a first observation, during the first load
ing cycle, the RPC behaviour exhibits two stages. The first, until image 45, 
is due to the elastic behaviour of material with slight homogeneous strain. 
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Fig. 2. Lengthwise profiles of the longitudinal component of the strain tensor rate 
(Fmax = 26kN, acquisition 1 i / s ) 

10' 

ro 40 60 so 

Fig. 3. Longitudinal strain field at the image 
a 45 - b 75 - c 180 - d image 45 of the sample 

In the second stage, many areas of strain localization ("multi localization") 
appear which may lead to the development of macro cracks. 

Although we observe two strain localization areas, on figure 3a, no crack 
is visible on the sample. At this time, it seems that the macro crack will 
appear in the localization area A (fig. 3a). In fact , this is the area B that 
leads to the creation of macro crack (fig. 2). 

During the loading, we observe (fig. 2) that residual strain are more or 
less important depending on the level of localization. Contrary to the area 
C, the areas A and B are the seats of residual strain. 

The second loading cycle shows that the localization areas are irreversible 
(permanent) . From the outset of loading, we observe an accumulation of 
deformation in the areas already identified. These areas are due to a state of 
damage more important than in the other parts of the sample. This second 
cycle also illustrat es the essential role of the fibres in the transmission of stress 
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around the neighbourhood of the damaged zones, leading to the apparition 
of a new damaged area D , for example. 

3.2 Tensile-compressive tests 

An outstanding characteristic of the concrete behaviour is the unilateral ef
fect. How is it for a RPC? 

Experimental results The figure 4 gives the evolution of the longitudinal 
component of the strain tensor for a given loading state (black curve). 

Fig. 4. Lengthwise profiles of the longitudinal component of the strain tensor rate 
(Fmax = 9.5kN in traction and -60 kN in compression, acquisition 1 i/ s) 

We distinguish on this figure three phases according to the loading state: 
(1) the traction which leads to "multilocalisation" of the strain; (2) the un
loading associated with residual strain distributed on the entire sample but 
more important where there were strain localizations; (3) during the compres
sion the residual strains progressively come out. At the end of the compression 
(cr = 40 MPa) we have a quasi-homogeneous strain state. 

Stress-strain relationship analysis For a plain concrete, a compressive 
loading applied to the damaged materials induces a recovering of the stiffness 
(unilateral character). Let us consider the case of RPC? 

With the kinematic measures, we can plot the stress-strain diagram for a 
gauge length of 30 mm at the centre of the sample. 
On figure 5a, we observe damage during the traction and a recovering of the 
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stiffness at the beginning of the compressive loading. We can see a difference 
of the stiffness between an undamaged sample and a damaged sample in the 
figure 5b. It seems there is not a total recovering of stiffness due to the fibres 
that interfere with crack closure. 
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Fig. 5 . Stress-strain relationship of a RPC sample- a Undamaged solicited in 
traction-compression - b Undamaged and damaged solicited in compression 

4 Thermal effects associated to deformation of RPC200 

Observations by the infrared thermography have been achieved on the un
damaged sample during three loading/ unloading cycles in compression. The 
experimental results are obtained during test performed at constant cross
head velocity (VcH = 5.10-2 mm.s- 1). 

4.1 Experimental r esults 

The evolution of the temperature variation of the median axis of t he sample 
versus time is represented figure 6. In overprinting, the strength evolut ion is 
plotted (white curve). 

During t he test , the temperature is uniform in the sample and we observe 
positive evolut ion of the temperature associated with the loading evolution. 
T he amplitude of the temperature variation is around 0.3°C for a maximal 
stress of 160 MPa. At first sight, this effect could be at tributed to a ther
moelastic coupling that we would like study. 

4.2 Valuation of the thermoelastic coupling 

We start our analysis wit h t he linearized heat conduction. T he second mem
ber only includes the thermoelastic coupling as heat source term. The lin
earization is justified since the thermal effect is negligible. 
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Fig. 6. Lengthwise profiles of temperature variation for RPC200 solicited in com
pression (Fmax = 250 kN (160 MPa), acquisition 6.25 i/s) 
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Fig. 7. Comparison simulation-experiment 

The experimental observations (temperature variation in phase with the 
loading) and the thermal features of the material (low conduction) enable 
us to do the quasi-adiabatic working hypothesis during the test. After the 
corresponding simplification, we can write: J 

ae . 
pC at= -(B+To)Em (1) 

where p, E et E have the usual significance and C and a denote respec
tively the specific heat capacity and the isotropic dilatation coefficient. While 
integrating with the initial condition e = 0 at t = 0, e being always little 
opposite To, we get: 
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e = _ Toau (2) 
pC 

where u is the stress in the material at the considered moment. 
Figure 7, we note that simulation results are consistent with experimental 

e evolution with To = 298 K, p = 2,5.103 kg.m- 3 , C = 838 J.kg- 1 .K- 1 [4] 
and a = 12.10-6 K- 1 , reference value given for concrete with silica granular 
(BPEL 91). It confirms the interpretation given in§ 4.2. 

5 Compressive loading tests on freeze/thaw damaged 
plain concrete 

Three freeze/thaw damaged samples have been subjected to a compressive 
test of 20 loading-unloading cycles. We have previously checked the damaged 
status with a preliminary loading-unloading compressive test. The experi
mental results are obtained during a test performed at constant cross-head 
velocity (V CH = 5.10-2 mm.s- 1 ). The strength evolution is quasi-identical 
for the three samples. 

The thermal effects are studied with the camera CEDIP. For reasons of 
a storage capacity, we only made several shots, 3 or 4, covering over 3 or 5 
loading cycles. 

5.1 Experimental results 

They are displayed for the sample 1563F6 (the more damaged). The evolu
tion of the temperature variation of the median axis of the sample during the 
test is represented figure 8. In overprinting, the strength evolution is plotted 
(white curve). 

We observe two phenomena corresponding, the first, to the temperature 
variation in phase with the loading cycles and, the second, to a progressive 
warming-up of the sample during the test. The same observations (different 
quantitatively) have been made with the sample 1563F2 and 1563F10 (the 
less damage).The first phenomenon has already been identified as thermoelas
tic effect (see §4-RPC). In the following, we will focus on the analysis of the 
second phenomenon. 

5.2 Study of the progressive warming-up 

Figure 9, we compare the evolution of the temperature variation of 3 points 
for each sample, during the test. The most important temperature variations 
are observed on the previously identified sample as the most damage. To 
operate the results appropriately, it is necessary to quantify what could be 
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due to the drift of the camera and of the ambient temperature. A sample has 
been filmed without any solicitation during a time equivalent to the time
test. The drift (positive) remains lower than 0.07°C. There is a small impact 
of camera-environment drift in the observed warming-up. 
Consequently, the evolution of the temperature map of the sample 1563F10 
can be allocated to the phenomenon of drift. On the other hand, it is not the 
same way for the samples 1563F2 and 1563F6. The increase of temperature 
observed at the end of the test (about 0.3°C) are much higher than what has 
been observed for the drift. The differences between the sample 1563F2 and 
1563F6, on the one hand, and the sample 1563F10, on the other hand, must 
be related to the states of different damage induced by the freeze/ thaw cy
cles. We can attribute this progressive warming-up to dissipative phenomena 
associated with the state of damage of the sample. Besides, we note (fig.8 
and fig.9) a non-homogeneous warming-up along the sample. Unless there 
was a non-uniform drift of the camera in the space that we did not study, 
this heterogeneity of temperature could be associated with heterogeneity of 
the state of damage. 
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Fig. 8. Sample 1563F6, lengthwise profiles of the temperature variation (20 load
ing/unloading cycles, F max = 265kN (35M Pa)) 
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Fig. 9. Comparison of the temperature variation 

6 Modelling of the damage thermoelastic behaviour of 
a plain concrete 

To take into account thermal phenomena associated with the deformation of 
concrete, which damage it, we propose to expand the M. Fremond and B. 
Nedjar's model [8]. In the modelling, the temperature variable is taken into 
account through thermal phenomena associated with thermal dilatation. 

6.1 Free energy and pseudo-potential of dissipation 

We are led to choose the free energy, '1/J, and the pseudo-potential of dissipa
tion ¢as: 

1ft= f3t [ ~ ( 2,u tr [Et.Et] +A ( (trEt) +f) - (3..\ + 2,u) a: trEt] + 

f3e [ ~ ( 2,u tr [Ee.Ee] + A ( (trEe)-f) + (3..\ + 2,u) a: trEe] + 

Wt (1 - (3t) + W e (1 - f3e ) + ~ [ (gradf3t) 2 + (gradf3e )2 ] - *()2 + Ie (f3t, f3e) 

- 1 { "2 "2} 1 . (...l.=EL.) [ + 2] qJ- 2 Ctf3t + Cef3e - 2 f3t 1_ Mt f3t 2,utr [Et .Et] +A( (tr Et) ) -

~!3e ( 1~~~{3J [2,utr [Ee.Ee]+A.((tr Ee)-)2] +L (!3t,!3e) 

With the notations: 
f3t and f3e are the damage quantity respectively in tension and compres

sion ((3 = 1, undamaged material and (3 = 0, complete damaged material); 
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the strain tensor is decomposed as: E = Et - Ee, such as in traction E = 
Et and in compression E = -Ee; 

W t and We are the initial thresholds respectively in traction and com
pression; 

M1 and Me are the factor of displacement of the thresholds W 1 and We; 
K measures the influence of the damage at a material point on the dam

age of its neighbourhood; 
c1 and Ce are the viscosity parameters of damage; 
Ic and L are respectively the indicator functions of the triangle C and 

of the set ]-oo,O] x ]-oo,O]. 

6.2 Constitutive laws 

With these choices, the constitutive laws are: 
r _ 81/t Br 81/t Hr _ 8oft "th · {t } nr bt · . CJ - ,.- , i E "{3· , i - ,------d{3· , WI l E , c . vve o ain. 

uE u t ugra -~ 

+f3t (2f-LEt +.A ((tn1)+) Id- (3.-\+2!-L)aBid) (3) 

B[ E ~ ( 2f-Ltr [E;.E;] + ,\ ( (tn;) sgn(ry) f) +77 (3,\ + 2f-L) aetrE;-W;+8Ie(f3;) 

with 7] = 1 if E; = Et, 7] =-1 if E; = Ee· We let He= Her +Heir, Ht = H{ + 
H1ir, Be= Ber + Beir et B1 = B1r + B1ir, which in addition cr =err+ crir, 
according to take into account in the power of the internal forces associated 
with damage and its gradient. 

6.3 Equations of damage evolution 

Like [8], the principle of virtual power is rewritten to take into account the 
power of the internal forces associated with microscopic motions. 

k a(3; = 0 on of! an 

W; + 77 (3.-\ + 2t-L) aetn; in f! 

6.4 Heat conduction equation 

(4) 

While adopting the assumptions leading to the classic form of the heat con
duction equation: 
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. 82¢1 
pCT- r + divq = Dl + pT~: ak = Wch (k = 1, ... , n) (5) 

vTvak 

We obtain after linearisation: 

( ae e ) pC - +- = Wch 
at Tth 

(6) 

where the ak are then state variables (except the temperature), Wch is the 
volume density of heat sources, D1 is the intrinsic dissipation, r symbolizes 
the external heat supply and q the heat influx vector. Tth is a character
istic constant of the local thermal looses. The subsequent assumptions to 
the linearization are the following: (1) the heat influx vector q is written 
q = -kthgradT where kth is the thermal conductivity coefficient assumed 
constant and independent of the temperature; (2) the external heat supply 
r is time independent; (3) for quasi-static processes, the convective terms of 
the material time derivative are negligible; (4) the thermal looses are linear 
[1]. 

The expression ofWch is, while assuming k, Wt, We, grad;3t, grad/3c, ;3t, 
and !3c independent of the temperature: 

Wch = D1 + (3A + 2J-L) atncT/3c- (3A + 2J-L) atntT/3t- (7) 

(3A + 2J-L) a/3cTtrEc- (3A + 2J-L) a;3tTtrf:t 
with 

D1 E Cc/3~ - ~/3c ( ~~~~(3c) ( 2J-Ltr [Ec.Ec] +A ((trEe)-) 2) + /3c8L (/3c) 

( 2J-Ltr [Ec.Et] +A ( (trEt) +f) + /3t8L (/3t) 

(8) 

and for the following terms in the order: the terms of temperature - dam
age coupling (respectively in compression and in traction) and the terms of 
isentropic sources. 

6.5 Numerical simulation of a compressive test 

Six load-unloading cycles in compression piloted in deformation have been 
simulated. The state of stress is considered like uniform in the space, what 
corresponds to grad ;3i = 0 and k = 0. T th is determined by a proportionality 
ratio of the thermal conductivity of steels to those of the concretes, Tth = 
10000 s. Some experimental observations confirmed this value and leads to 
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do the assumption of quasi-adiabatic tests (elevated Tth)· For We, Me, and 
Ce, the proposed values in [8] have been taken: We = 0,7.10- 2 MPa, Me = 
0,8, Ce = 0,5 MPa.s with besides E = 25 GPa, 'Y = 0,2, p = 2,2.103 kg.m- 3 , 

To = 298 K, € 0 = -1,3.10- 4 s- 1 and taken in the literature a= 10.10-6 K- 1 , 

C = 838 J.kg- 1.K-1 . 

Mechanical behaviour The figure 10 gives the stress-strain answer of the 
material and the figure 11 the evolution of the damage during the time. 
We recover a classic behaviour for the concrete requested in compression. 
To every cycle of loading the material damages it a few more (fig. 11). The 
consequences of the thermoelastic coupling are as well imperceptible on these 
curves as on the experimental curves. 

l 
6 .. ~ ... 

~ ., .. 

.OS .045 .(I I .(11 0 40 150 10 100 120 
STRAJN )1: 10 ' m .Ui.ISI 

Fig. 10. Stress-strain relationship Fig. 11. Damage evolution 

Thermal behaviour The thermal behaviour, resulting of the deformation 
and the damage of the material, is characterized by t he evolution during the 
time of the t emperature dependence, e (fig. 16), and of the heat sources, w eh 

(fig. 15), corresponding to t he int rinsic dissipation, D1 (fig. 12), and to the 
terms of coupling temperature-damage, noted T-,8 (fig. 13), and temperature
deformation, noted T-E (fig. 14). During a cycle, D1 (fig. 12) and T-,8 (fig. 13) 
are nonzero if the damage grows (.Be decreases) to the load, the threshold of 
damage being exceeded. The maximal values ofD1 and T-,8 decrease with the 
passing of the cycles because of the increase of the damage threshold. We note 
D1 is negligible in relation to the other heat sources terms. It is not major 
in the temperature variations generated by the processes of deformation and 
damage. 

With regard to the terms of coupling, we note, for a given cycle, a "com
petition" between T-,8 (fig. 13) , that increases, with the damage and T-E (fig. 
14), that falls as and when the damage grows. The figure 15 gives, in practice, 
the result of this competition , D1 being negligible. 

If we look at the evolution of B, under the hypothesis of quasi-adiabaticity, 
we note (fig. 16) the apparent superposition of two phenomena: 

the linear temperature variations, in phase with the loading-unloading 
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Fig. 15. Heat sources evolution 

Fig. 17. For the first cycle, comparison 
with computed temperature 

a progressive warming-up of the material. 
The first phenomenon results from the competition between T-/3 and T-E. 

If we perform a zoom, on the first cycle, while making represent the evolution 
of the temperature of the material while assuming that they don't damage 
it, we note (fig. 17): 

a thermoelastic evolution before the threshold of damage (5 s); 
then an influence of T-{3 and T-E that offset themselves (until 7,5 s); 
then the major influence of T-{3 lead to a temperature variation (nonlin-

ear) more important than the one due to the only thermoelastic effect (linear) 
and, a fortiori, to the thermoelastic effect with damage (nonlinear) . 

If we add that the thermoelastic effect to the unloading of the damaged 
material (E' < E), cannot compensate the contribution of heat to the load, 



www.manaraa.com

200 V. Huon, B. Cousin, 0. Maisonneuve 

the non return to zero of e at the end of the loading quite explains them
selves. A progressive elevation of e results from it at the end of every cycle 
(second phenomenon). We note (fig. 16) that the progressive warming-up of 
the material seems limited. In fact, the threshold of damage and f3c have a 
limit depending of the maximum deformation imposed for every cycle. At the 
limit we would observe the effect of the thermoelastic coupling of concrete 
damaged. 

Confrontation with the experience The results of the simulation lead 
to an interesting re-reading of the obtained experimental results, but not as 
yet beyond doubt. 

Compressive cycled tests have been achieved on a plain concrete. The 
evolution of the temperature variation of the median axis of the sample dur
ing time is represented figure 18. In overprinting, white curve is plotted the 
evolution strength. The temperature variations in a point of the sample are 
given figure 19. These results are qualitatively very similar to those given 
by numerical simulation. We note the superposition of two phenomena: tem
perature variations in phase with the evolution of the load and a progressive 
warming-up of the sample. This last lets think about an effect of the damage. 
However, a doubt subsists on the decrease of the peak load, during the cycles. 
Besides, the progressive warming-up is important in relation to the results of 
the simulation. It is to note that the detection of a possible effect of T-(3 is 
made again difficult by a noisy signal. In our observations, there are thermal 
manifestation associated to the damage of the samples certainly, but also the 
unavoidable phenomena of drift. 

With regard to the concrete damaged by freeze/thaw cycles, for the three 
samples presenting different states of damage, the simulation of the compres
sive cycles gives a progressive warming-up more marked for the less damaged 
sample. The tests gave an inverse result and of intensity more marked (0,3°C 
at the end of test). It seems to indicate that other dissipative phenomena 
has been activated, on these pre-damaged sample, linked for example to con
tact rubbing between the lips of the microcracks, a priori of any orientations 
because non generated by an axial loading. 

7 Conclusions 

In spite of important experimental difficulties due to the studied material 
nature and to the thermal phenomenon weakness, it has been possible: 

to clearly show the thermoelastic coupling RPC's; 
to perform a first scanning of the temperature-damage couplings and dis

sipative phenomena either appearing in the damage thermoelastic behaviour 
of damageable concrete solicited with quasi-static way in simple compression. 

Otherwise, during tests led on a RPC, the mechanical measures permitted 
to show precocious "multilocalisation" phenomena of the deformation. 
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Fig. 18 Lengthwise profiles of temperature 
variation for RPC200 solicited in compres
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Fig. 19 Temperature variation in 
one point of the sample 

To go farther in the analysis of the phenomena, it will agree to define the 
more rigorous experimental protocols, in order to be able to do the part of 
that reverts to the elastic deformation and the existence, the creation or to 
the development of micro or macrocracks. 
On the point of view of the applications, the obtained results on the freeze/ thaw 
damaged samples permit to consider interesting repercussions in the domain 
of the fatigue. In any case, it will be important to really master the phe
nomena of drift of the camera-environment set and to be able to, as for the 
metallic materials, t o pass from the temperature maps to the heat sources. 
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Abstract. Infrared thermography is nowadays a well-established method of analy
sis for thermal irregularities in construction materials, components and systems. 
Many laboratory experimentations, but most of all the great number of in-field 
surveys, have allowed to get a good knowledge about the tools used to this end and 
the physical phenomena that make the basis for surveying the parameters to be used 
for the definition of the investigated performances. Investigations were therefore di
rected towards different fields characterised by physical phenomena that could be 
identified with available tools. 
This short presentation will illustrate some meaningful analyses carried out by ITC, 
whose results show good possibilities of using the thermographic method especially 
for the verification of adhesions and detachments of plasters and the determination 
of structural characteristics of construction materials and components. 

1 Adhesion and detachment of plaster 

Using a thermal methodology to point out plaster detachment, implies a 
different behaviour with respect to heat propagation between construction 
materials and air; it is assumed that there is a thin air layer between plaster 
and masonry, due to the detachment. 
The existence of this air layer in a state of rest, modifies the heat propagation 
mechanisms with respect to an area without any such layer, due to the ad
ditional thermal resistance it provides. By applying thermal impulses to the 
area of interest, any thermal irregularity caused by detachment appears on 
the thermogram during the cooling phase as a warmer area since the greater 
thermal resistance of the detached area prevents the heat from leaking out, 
keeping it for a longer time in the wall at the rear. The thermogram repre
sented in Figure 1 shows an example of plaster detachment detected in-situ 
by applying the above illustrated principles. This thermogram clearly shows 
the light detachment areas and the dark adhesion areas. 
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The thermographic output was subsequently proved to be correct by tear
ing off the investigated part. Another example is given in the thermographic 
analysis of Figure 2 carried out in laboratory on plastered concrete speci
mens on which 4 detachments of plaster have been artificially executed with 
increasing thickness values from 1 to 4 mm. 

Fig. 1. In-situ plaster a nalysis 

The thermogram clearly shows the proportionality between the thermal 
evidence of the detachment and its extent. Therefore, what has been observed 
in-situ can be reasonably interpreted in a similar way. 

i··-····-, 
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:·····-·-, 
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a) detachment thicknesses b) thermogram 

Fig. 2. Laboratory plaster analysis 
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Fig. 3. Bar under tensile stress 

a) b) 

c) d) 

Fig. 4. Thermograms' sequence of a bar subjected to tensile stress tests up to 
failure 
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2 Identification of stress states 

Stress states may take place in materials in the form of heat dispersion in 
points where the material is weaker or more stressed, thus outlining areas at 
risk of failure before failure actually occurs. This condition was analysed by 
performing tensile stress tests and compressive tests on two samples consist
ing of steel bars and lightweight concrete prisms. The thermographic analysis 
highlighted these areas. 

Fig. 5. Concrete prism under compressive stress 

2.1 Tensile stress test 

T he tensile stress test was performed on bars subjected to an increasing stress 
starting from an initial value up to yield point and failure. T he t hermograms' 
sequence illustrated in Figure 4 shows the thermal behaviour of the bar during 
the phases previous to failure. In Figure 4a it is evident how the stress state 
is producing a temperature variation in the area of the bar where failure 
will later occur. In Figure 4b, the area with the highest temperature clearly 
becomes outlined as yield begins. Figure 4c shows the beginning of the failure 
phase; it can be clearly noticed how the area where temperature has increased 
is progressively reducing since all the stress applied is absorbed by the creep 
and detachment of the material. Finally, in Figure 4d the bar breaks. 
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2.2 Compressive test 

The compressive test was executed on lightweight concrete samples subjected 
to increasing loading and unloading cycles during which thermographies were 
carried out up to the failure of the sample. Thermographies of Figure 6 il
lustrate the thermal trend of the sample's surface, starting from conditions 
of thermal balance represented in the thermogram of Figure 6a where it is 
possible to notice a slight thermal gradient which increases with height and 
two slight thermal bridges due to the backing plates of the press. The ther
mogram of Figure 6b shows the reversal of this gradient and how the section 
where the temperature increases to a greater extent moves towards the lower 
part of the specimen. As it may be remarked by examining the thermogram 
of Figure 6c, the area with the temperature rise goes up towards mid-height 
and it is precisely in that section that the specimen yields, as shown in the 
thermogram of Figure 6d. 

a) b) 

c) d) 

Fig. 6. Thermograms' sequence of the sample subjected to cyclic compressive stress 
with increasing intensity up to failure 
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3 Conclusions 

The purpose of the executed analyses was to observe thermal dynamics in 
the area of plaster detachments and as a result of stress states applied to a 
series of meaningful samples. 

As observed, the analyses provided meaningful responses which help to 
clearly understand the trend of the investigated phenomena and the sectors 
where the application of this method may prove to be meaningful. 

In particular, it was demonstrated that the possible presence of detach
ments in plasters could be detected and it may be assumed that, by applying 
repeated loads on structures, it could be possible to underline the areas that 
are particularly sensitive to stress, which are therefore potentially exposed to 
damage or failure risks. 

The future development of this method is expected to be based on a deeper 
knowledge of the minimum energy levels obtained by means of dynamic stress, 
able to thermally highlight the greatest-stress areas in some typologies of 
construction components. 
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Abstract. We propose to analyse the phenomenological equation of water trans
port in a biconstituent medium with stresses. The work is limited to the case of 
elastic, isotropic behaviour and an isothermal transfer process. 

1 Introduction 

Water transport in certain heterogeneous media such as gels and biopolymers 
may be accompanied by considerable deformation causing internal mechan
ical stresses which interact with water transport mechanisms. In previous 
work (Auria R and Benet JC, 1990) on transfer of water in natural rubber, 
the pattern of variation of the transport coefficient with the water content 
remained unexplained; the hypothesis of interaction between transfer and 
deformation was mentioned. It has been shown that internal strain occur
ring during transfer affect the expression of local diffusion flux (Larche FC 
and Cahn JW, 1982). Following these publications, we propose to analyse 
the phenomenological equation of water transport in a biconstituent medium 
with stresses. The work is limited to the case of elastic, isotropic behaviour 
and an isothermal transfer process. 

2 Phenomenological transport equation 

2.1 General equation, elastic case 

The thermodynamics of irreversible linear processes gives the following trans
port equation in a biconstituent medium during an isothermal process in 
which evolution is assumed to be quasi-static (Mrani I, 1993) 

(1) 

Gravity and accelerations have been ignored in this equation. J is the 
transport flux defined from velocities of water u and the solid component 
{), Pe is the apparent bulk mass density of water, Lis the phenomenological 
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transport coefficient, T is the temperature and f.Le is the chemical mass po
tential of the liquid. 
The state variables used to describe the local state of the system are water 
content ( w) and the strain tensor ( c: i;). In the neighbour hood of a reference 
state ( W 0 , Eij), the increment of the chemical potential of water f.Le is related 
to the infinitesimal increments in state variables (Coussy 0, 1993) by the 
equation: 

(2) 

where Ps is the apparent bulk mass density of the solid phase. dw is de
fined by dw = Ps ( Of.Le I ow) with constant deformation. K is the coefficient 
of compressibility: 3K = El(1- 2 v), where E is Young's modulus and vis 
Poisson's ratio. (3 is the hygrometric expansion coefficient; trc: is the trace of 
the strain tensor. 
Within the framework of infinitesimal changes around the reference state, 
the elastic mechanical behaviour of the medium accounts for the incremen
tal variation in stress tensor a ij according to increments in state variables 
(Coussy 0, 1991) : 

(3) 

where 6ij is the unit tensor and).. and p, are Lame's coefficient. According 
to (3), coefficient (3 is defined by: 3K (3 = -( oa ij I ow) 6ij, with constant 
deformation. 
Using (2), transport equation (1) becomes: 

J = -Dwgradw + Dc:gradtrc: (4) 

Transport coefficients D w and D" are related to the phenomenological 
coefficient L by the following equations: 

D = L dw. 
w Tps 1 

(5) 

2.2 Thansport equation for a plate 

In general, equation (4) is difficult to analyse experimentally. In the case of 
a plate, the increment of the trace of the stress tensor depends solely on the 
water content increment (Mrani I. 1993): 

l!:.p,e = ~[d~ + 2E(32]!1w 
Ps 1- l/ 

(6) 
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According to (6), equation (1) becomes: 

J = -D*ow 
OX (7) 

This equation is similar to Fick's law. Apparent transport coefficient D* 
depends on the hygroscopic and mechanical parameters of the material: 

D* = __£_[d* + 2E;J2] 
Tp8 w 1-v 

With: 

3 Experimental study of the phenomenological 
equation 

3.1 Experimental verification 

(8) 

(9) 

Validation of transport law (7) and deduction of transport coefficient values 
D* are proposed. The experimental study concerned water transport in agar 
gel plates initially 15 mm thick and with a uniform water content of 10. The 
samples were placed in a polyethylene glycol (PEG) solution with controlled 
temperature (30°C). The difference in concentration at the interface between 
the sample and the solution caused movement of water from the material to 
the solution, accompanied by shrinkage of the material. Transfer was one
directional along axis ox perpendicular to the facets of the agar gel plate. 
Experimental conditions are those of the conditions of application of equation 
(7). 

Samples were taken at intervals of time and cut into fine slices 0.6 mm 
thick at right angles to the transfer direction. Water contents were measured 
in the slices. This makes it possible to draw water content profiles agains time 
and to deduce the flux J and the water content gradient. 

Figure 1 shows the variation in transport flux according to water content 
gradient for different values of w. This figure shows that the transport flux 
can be considered to be proportional to the water content gradient. This 
validates equation (7) in the water content range studied. 

3.2 Apparent transport coefficient D* 

Apparent transport coefficients were calculated using the slopes of the lines 
in Fig 1. Figure 2 shows the variation in coefficient D* according to the water 
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content for an interval1.5 < w < 8. It can be seen that the coefficient depends 
strongly on water content. At w > 6, the transport coefficient fell rapidly to 
a minimum of about w = 6. Similar movements of coefficient D* to those in 
Fig 2 were observed in the case of biphase media (Auria R, 1988, Do Amaral 
S.P.J, 1992, Gehrmann D and Kast W, 1978) and triphase media (Constock 
GL, 1963, Crausse Pet al., 1984, Ketelaars AAJ, 1992) 

In triphase media, the rise in transport coefficient can be attributed to 
the preponderance of transfers in the gas phase with low water contents. 
This explanation cannot be used here because of the biphase nature of agar 
gel. Interpretation based on the equation for coefficient D* (8) is proposed 
here. This requires analysis of the term related to contraction of the medium: 
2£{32 /(1- v). 

The Young's modulus E of agar gel was determined by one-directional 
compression tests (Mrani I, 1993). Its variation according to water content 
reveals considerable rigidification of the material at below w=400%. Ultra
sonic measurements of Poisson's ratio v (Mrani I, 1993) show that this coeffi
cient is practically constant at 0.5 in the water content range investigated. In 
the hypothesis of a biphase medium, coefficient {3 can be expressed as follows 
(Mrani I, 1993): {3 = 1/ 3(a + w); the coefficient increases when w decreases. 
In the case of agar gel, these variations cause very strong increase in the term 
2E{32 /(1 - v) at low water contents, which may account for the increase in 
coefficient D* in Figure2. 
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Fig. 1. Variation of water transport flux coefficient according to water content 
gradient for different values of w 
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Fig. 2. Variation of transport coefficient of water in agar gel 

3.3 Identification of intrinsic transport coefficients 

Unlike the transport coefficient D* defined in the case of a plate, coefficients 
D w and D" are intrinsic to the material. It is thus necessary to determine 
these coefficients to describe transfers for any geometrical case. 
Using expressions (5) and (8), Dw and DE are given by: 

Dw = 3Kf3 D* 
d* + 2E(J2 

w 1-v 

. D = d~ + 9K(32 D * 
' c; d* 2E(J2 

w + 1-v 

(10) 

Coefficient d~ is determined using the desorption isotherm (Mrani I, 1993) 
in the case of agar gel. Variation of Dw and D6 according to water content are 
shown in Figure 3 This figure shows that unlike the transport coefficient D*, 
coefficients D w and D" display monotonic decreasing on the water content 
and approach zero when the material is dry. Rise in coefficient D* (Fig 2) 
with w < 6 did not affect the rate of variation of coefficients D w et D c:, given 
the intrinsic nature of the two coefficients. 

4 Numerical simulation of the dehydration of a sphere 
and a cylinder of agar gel 

A sphere and a cylinder of gel are placed in a solution of polyethylen glycol 
(PEG) . In these conditions, the water is eliminated of the gel by effet of con
centration difference between the sample and the solution. The flux of water 
imposed as condition to the limit has been calculated from the dehydration 
kinetic. A numerical model gives water content and stresses fields and defor
mation of the sphere and the cylinder. 
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Fig. 3. Variation of transport coefficients Dw and D< in agar gel according to water 
content 

Figure 4 gives an exemple of comparison between experimental and numerical 
water content profiles in the case of a sphere presenting initialy a radius of 2 
em. The model make it possible to analyse the evolution of stresses profiles; 
figure 5 shows the evolution of the circunferential stress at different times in 
the case of the sphere. Two phases can be seen is the figure. At the begen
ning of the dehydration (t<5h) the circunferential stress was positive at the 
surface of the sphere (traction) and negative in the material (compression). 
If the dehydration is to fast, this may cause cracks at the surface. In a second 
phase (t>7h) the circunferential stress become mainly in compression at the 
surface and traction in the centre. Figure 6 represents the final deformation 
of the cylinder. There is a good agreement between experience and theory 

5 Conclusion 

The study shows the influence of mechanical actions on diffusion fluxes. 
Transfer is not governed solely by water content gradient but also by the 
deformation gradient. It has been shown that in an infinite plate with elastic, 
isotropic behaviour, transport is governed by an equation similar to Fick's 
law: water flux is proportional to the water content gradient. In this case, the 
transport coefficient expression contains a part related to the hygroscopic 
feature of the medium and a part related to its rheology. 
Experimental study of water content profiles in an agar gel plate justified the 
use of a transport law of the Fick type for the water content range investi
gated. The apparent transport coefficient decreases with the water content 
and reaches a minimum at w = 6 and then increases with low water con
tents. The theoretical expression proposed makes it possible to attribute the 
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increase in apparent t ransport coefficient to variations in elastic and hygro
metric coefficients. 
Use of the variation of the apparent transport coefficient enabled determi
nation of the two coefficients related to the water content and deformation 
gradients. These coefficients are intrinsic to the material and make it possible 
to describe water transport in agar gel for any geometrical layout . 
The numerical results show good agreement between experience and theory 
in the case of dehydration of a sphere and a cylinder concerning water content 
profiles, stresses and deformation. 
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Experience Theory 
Fig. 6. Comparison of experimental and theoretical deformation of a cylinder at 
the end of dehydration 
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Abstract. This work focuses on a three-dimensional thermomechanical model, 
recently proposed by Souza et a!. [4] for stress-induced solid phase transformations 
and able to reproduce the main features of shape-memory materials in the realm of 
a small-deformation regime. A careful reading of the cited work highlightes how the 
proposed integration algorithm is only partially developed. Henceforth, we focus on 
the development of a effectively robust integration algorithm to be adopted in a 
numerical scheme, such as a finite-element framework. 

1 Introduction 

The good mechanical performances of shape-memory alloys (SMA) are a con
sequence of the fact that the material may in general present two different 
crystallographic structures, one characterized by a more ordered unit cell and 
indicated in the following as austenite (A), the other characterized by a less 
ordered unit cell and indicated in the following as martensite (M). 

From a micro-mechanical point of view, the presence of two different crys
tallographic structures is the base for a reversible austenite-martensite phase 
transformation, while from a macro-mechanical point of view, the reversible 
solid-solid phase transformation results in two unique effects, i.e. the pseu
doelasticity (PE) and the shape memory effect (SME). 

The more and more frequent use of these unusual effects in commercially 
valuable applications has stimulated a vivid interest in the development of 
constitutive models able to reproduce the basic material response. 

Hence, this work focuses on a three-dimensional thermomechanical model, 
recently proposed by Souza et al. [4] for stress-induced solid phase transfor
mations and able to reproduce the main features of shape-memory materials 
in the realm of a small-deformation regime. Souza et al. [4] discuss also a 
return-map integration algorithm, to be used for the numerical solution of 
the model, considering some simple one-dimensional problems as well as a 
more complex three-dimensional non-proportional problem and showing a 
good performance of the model in comparison with experimental results. 

However, a careful reading of the cited work highlightes how the proposed 
integration algorithm is only partially developed. Henceforth, we focus on the 
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development of a effectively robust integration algorithm to be adopted in a 
numerical scheme, such as a finite-element framework. 

2 The model 

Cast within the framework of classical irreversible thermodynamics [2, 1], the 
model proposed by Souza et al. [4] is developed using as control variable 
the strain E, and the temperature T, and as internal variable a second-order 
tensor, etr, indicated as transformation strain. 

Assumed to be traceless, etr is a measure of the strain associated to the 
phase transformation and, in particular, to the convertion from austenite or 
multiple-variante martensite to single-variant martensite. Accordingly, the 
norm of etr should be bounded between zero - for the case of a material 
without oriented martensite- and a maximum value f.£- for the case in which 
the material is fully transformed in oriented (single-variant) martensite. 

For brevity, in the following we directly discuss the time-discrete version 
of the model, as proposed by Souza et al. [4], concentrating only on the 
deviatoric part of the model, since the volumetric component is purely elastic. 
Moreover, to minimize the appearance of subscripts, we find convenient to 
indicate with the subscript n a quantity that is evaluated at time tn, and 
with no subscript a quantity that is evaluated at time tn+l· 

The time-discrete constitutive model is described by the equations: 

s=2G(e-etr) 

tr tr X 
e = en + Ll( II XII 

lletrll ::::; f.£ 

X=s-a 
etr 

a= [TM(T) + hlletrll + l]lletrll 

1::::o 
F(X) = IIXII - R ::::; 0 

Ll( ::::: 0 Ll(F(X) = 0 

where: 

(1) 

• Equation (11) is the linear elastic relation between the deviatoric stress, 
s, the deviatoric total strain e, and the transformation strain etr, with 
G the shear modulus. 

• Equation (b) is the evolution equation for the transformation strain, 
constrained by Equation (h), which is relative to the physical interpre
tation given to the internal variable etr, with 11·11 indicating the Euclidean 
norm. 
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• Equation (14 ) defines the transformation stress, X; the quantity a plays 
a role similar to the so-called back-stress in classical plasticity and, ac
cordingly, X can be identified as a relative stress. 

• Equation (h) defines the back-stress a, where TM is a positive and 
monotonically increasing function of the temperature, defined as TM =< 
{3(T- T0 ) >, with < · > the positive part, {3 a material parameter, T 
the room temperature and To the temperature below which no twinned 
martensite is observed. In particular, we note that a is defined only for 
the case lletrll > 0 while 1 is constrained by Equation (1 6 ). 

• Equation (h) defines the limit function, with R the radius of the region 
with no phase transformation. 

• Equation (1 8 ) are the classical Kuhn-Tucker conditions. 

Given the time-discrete model, the stress history is computed from the 
strain history by means of a two-step elastic-predictor inelastic-corrector pro
cedure, known as a return-map [3]. The algorithm proposed in the present 
work is detailed in Tables 1, 2 and 3, while in the following we simply com
ment on some significative aspects. 

1. Compute trial state 

{ ::~T: ;;~e _ etr,TR) 

etr,TR 
n T R = .,...--:---:-;~ 

jjetr,TRjj 
2. Check material state 

See Table 2 

3. Update material state 
See Table 3 

Table 1. Time-discrete model: solution algorithm. 

As any return-map, the algorithm starts with the computation of an elas
tic trial state. Then, if the limit equation is not violated (i.e. F ::; 0), the trial 
state represents the solution at the current time step. Otherwise, if the limit 
equation is violated (i.e. F > 0), an inelastic correction should be performed, 
requiring the satisfaction of the limit condition (F = 0). 

An iterative Newton method employing the trial step as initial condition 
is used to solve Equation 1 in the case on inelastic correction. In particular, 
as summarized in Table 3, we distinguish between two different situations, 
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STATE AND BRANCH DETECTION 

if lie;; II = 0 then 

compute: F = llsTRII- [TM(T) + R] 

else 

end if 

{
ifF< 0 then 

check F: else 
end if 

elastic step (EL) 
active p.t. (PT) 

{ 

a.TR = [TM(T) + hlletrll] nTR 

compute: X= sTR- a.TR 

F= IIXII-R 

{
ifF< 0 then 

check F: else 
end if 

elastic step (EL) 
active p.t. (PT) 

(2) 

(3) 

Table 2. Time-discrete model: detection of the material state and of the evolution 
branch through the limit function F. 

described by either one of the two following set of equations: 

(5) 

(6) 

3 Numerical examples 

To test the effectiveness of the proposed algorithm, we reproduce the numer
ical examples proposed in Souza et al. [4]. The material parameters are: E = 
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BRANCH SOLUTION AND STATE UPDATE 

Elastic step (EL): 

{ 

etr = etr,TR 

s = 2G ( e - etr) 

exit 

Active phase transformation ( PT): 

CASE PT1 - Evolving phase transformation: 

if lie;; II = 0 then 

llsll = TM(T) + R 
e 

X=RM 

etr = [II ell - MJ ~ 
2G llell 

else 

X=X 
end if 

Find etr solving: iF (X, ..1() = 0 

Check solution: else {
if lletrll < EL then 

end if 

CASE PT2 - Saturated phase transformation: 

{ 
Find etr, 1 solving: 

exit 

(4) 

[See Eq. 3] 

[See Eq. 5] 

exit 
continue 

[See Eq. 6] 

Table 3. Time-discrete model: branch solution and detection of the new state in 
the different phases. 

70000 MPa, v = 0.33, R = 45 MPa, h = 500 MPa, E£ = 0.03, T0 = 253.15 
a K, f3 = 7.5 MPa° K- 1 . 

The tests performed are: isothermal uniaxial (tension-compression) tests 
in the superelastic range (Figure 1); an isothermal uniaxial (loading-unloading) 
test, followed by a free-stress thermal cycle in the shape-memory effect range 
(Figure 2). 
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Fig. 2. The shape memory effect. 
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Fig. 3. Non proportional loading path. 

Following again Reference [4], and choosing the material constants as 
follows: E = 30700 MPa v = 0.36 R = 73.4 MPa h = 9230 MPa EL = 0.1 To 
= 253.15 ° K (J = 4.1 MPa° K - 1 , we also consider a non-proportional tension 
torsion test (Figures 3-6). 
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Fig. 6. Shear stress and strain response under non proportional loading. 

4 Conclusions 

We may conclude pointing out on one hand the qualities of the constitutive 
model as proposed originally by Souza et al. [4], which is to be able to catch 
the basic SMA features. On the other hand, the numerical solution algorithm 
proposed by Souza et al. has shown limits and inconsistencies. Accordingly, 
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we report a robust integration algorithm for the solution of the cited model 
in a time-discrete setting. 
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Abstract. Some phenomenological and macroscopic modelings of solid/solid phase 
transitions involve a so-called interaction term which may imply the nonconvexity 
of the strain energy function. Nevertheless, it is shown that, if this term is not too 
large, these modelings are valuable and account for some experimental facts. 

1 Introduction 

I will present some remarks on a category of phenomenological modelings 
of phase transition in crystalline solids. These modelings involve a so-called 
interaction term which may imply the nonconvexity of the strain energy den
sity function of the medium. This lack of sacrosanct convexity generates some 
controversy, warning, or nonuse (see some comments in [2], [8], [9], [13], [19]). 

I will show that, if this term is not too large, the modeling is valuable. 
Certainly, the stored energy density function is not convex but quasiconvex 
and, consequently, inherits a double-well like structure which may account 
for some experiments. 

From a technical, say mathematical, standpoint, this study is nothing but 
a slight variant of the beautiful papers [11], [12] ... Nevertheless, I hope it may 
interest people concerned with the modeling of shape memory alloys. 

2 Setting the problem 

First, the phenomenological modelings, that I will discuss, describe the state 
of the medium by a triple ( E, x, T) ; E, T stand respectively for the linearized 
strain tensor and the temperature, while 0 :::; x :::; 1 denotes a volume frac
tion. Since a volume fraction is put forward, note that this modeling operates 
at a large, say macroscopic, scale. Moreover, x being a scalar, I will consider 
only two phases; indeed considering more phases implies some substantial 
difficulties (except in obvious symmetry related phases). Thus this modeling 
concerns the detwining of two variants of martensite (martensite may present 
two variants in the case of soda, neodynium pentaphosphate, wolfram, ... 
) or is appropriate to polycristalline alloys where the variants of martensite 
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are not told apart in the austenite-martensite mixture. Next, a free energy 
density function is defined by a function W of the state variables. At last, the 
phase transitions are assumed nondissipative, which seems rather realistic, so 
that the medium has a thermoelastic behavior with a stored energy density 
function 

W(E,T) = Inf{W(E,T,x), O~x~1} 

Of course, the whole point is the choice of W ; at least two approaches 
lead to the category of modelings that I consider. The first approach, which 
models the medium as a generalized standard medium [10], splits the free
energy into three terms: 

(1) 

The first term is the thermoelastic one, xa being the phase transformation 
part of the total strain E , while the second one concerns the latent heat 
exchange. The last one is the stored part due to internal changes, it is affected 
by the interactions between phases thus it has to be minimal and equal to 0 
at x = 0 or x = 1. Obviously x E [0, 1] f-----7 x(1-x) is a simple and smooth 
function which satisfies the previous conditions, so a proposal for w<~> is: 

w<~>(x, T) = ¢(T) X (1- x) ) ¢ 2': 0 

Note that in [14], [15], [16], it is reported that x (1- x) is proportional 
to the expectation value of the interfacial area, if the phases are randomly 
distributed over the specimen ... Moreover, this modeling implicitly assumes 
that the elastic coefficients of the phase are equal, so this modeling confines 
to detwining. 

The second approach regards the medium as a mixture such that the free 
energy may be ax-weighted combination of the energies Wi, i = 1, 2, of each 
phase. But, referring to homogenization, subtracting a term we , minimal 
and equal to 0 at x = 0 or x = 1 , yields a better estimate: 

(2) 

Once again, a convenient choice is 

wc(x,T) = c(T)x(1-x), c2':0 

Note that this approach does not assume the identity of the elastic laws 
of the two phases. From the mixture standpoint, another approach, which 
will be detailed in remark 3.1, leads to an expression like (1) in the case of 
two linearly elastic phases with identical elastic moduli. More deeply, this 
last assumption, which will stand for all the sequel, implies the identity of 
the two approaches. More precisely, I assume 
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,i = 1,2 

where ai is the stress-free strain of the i-th phase, Wi the associated minimum 
energy and o: the tensor of elastic moduli, a positive symmetric linear map 
on the space 8 3 of symmetric matrices. Then the obvious identity 

x W1(E, T) + (1- x) W2(E, T)- c(T) x (1- x) = 

where 

1/2 o: (E- a(T)) · (E- a(T)) + w(x, T) + rj>(T) x (1- x) 

a=xa1+(1-x)a2 'W=XW!+(1-x)w2 
1> = 1/2 o: a· a - c , a= a2 - a1 

(3) 

yields a single modeling where two equivalent expressions of the free en
ergy are given by the two members of this identity! 

It is not my purpose to list all the authors who, specifically or vaguely, 
proposed or discussed this modeling. Due to the many studies devoted to 
Shape Memory Alloys, it is impossible to be exhaustive. Generally, some 
information may be found in [2], [6]-[9], [13]-[17], [19] and in the references 
therein. My main thrust is to decide on the value of a nondissipative modeling 
where the free energy and the strain energy functions are : 

Wq,(E, x, T) = 1/2o:(E- a(T)) · (E- a(T)) + w(T) + rj>(T)x(1- x) 

= xW1(E, T) + (1- x)W2(E, T)- c(T)x(1- x), c = 1/2o:a.a -1> (4) 

and 

Wq,(E,T) = Jnf{Wq,(E,T,x), O::;x::; 1} (5) 

Clearly, from the first expression, 1> non positive implies that Wq, is a 
convex function of the couple ( E, x) and, consequently, that W q, is a convex 
function of E • But, as previously noted, 1> negative does not seem plausible! 
... Moreover, it is not difficult to see that W q, is a convex function in E if 1> is 
positive. In fact, it is not a disaster. I will show that if 1> is positive, but not 
too large, the modeling is valuable ... In the following technical discussions, 
temperature will only play a role of parameter, thus temperature dependence 
is suppressed hereafter. 
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3 (Quasi)convexity properties of W <P 

A mechanical interpretation of the mathematical theory of quasiconvexifica
tion [5], [18] may be : "at the macroscopic scale the behavior of a hyperelastic 
material is not governed by the true stored energy function but by an ap
parent one : its quasiconvexification, which is the infimum of those average 
energies that can be attained in deformations with a given average". Hence a 
first criterion of a good macroscopic modeling is the quasiconvexity property 
of the stored energy density function W which, in our case, may be read as : 

where the choice of the domain U is unimportant. Note that convexity 
implies quasiconvexity but the converse is generally false. Here are some 
(quasi )convexity properties of the strain energy function W <P : 

Theorem 3.1. Let 

h =Min { 1/2o:(z- a)· (z- a); z = k 0 v + v 0 k, k, v E R 3 } E [0, 1/2o:a ·a] 

then 
¢ ::; 0 implies W <P is convex, 
h > 0 and 0 ::; ¢ ::; h implies W <P is not convex but quasiconvex, 
h < ¢ implies W <P is not quasiconvex. 

Moreover, W <P equals W 1/2 aa·a if ¢?: 1/2 o: a· a . 

As noted in [11], h differs from 0 if and only if the full transformation 
strain a is not a symmetrized tensor product, in other words if the two 
stress-free strains are not compatible. Thus if h > 0 , it can be claimed that 
the modeling with ¢ E [0, h] , is a "good" macroscopic modeling, whereas 
only ¢ = 0 yields a good modeling if h = 0 ! 

Proof of theorem 3.1. Several arguments of [11] pp 201-203 are used with
out giving details. First, in the definition of quasiconvexity, a unit cell Y and 
periodicity conditions may be used in place of U and Dirichlet conditions. 
Standard results on mesurable selections imply : 

I:= lnf { ~ W ¢(E + E(u)) dy; u E C~er(Y)} 

= lnf {! W¢(E + E(u), (}(y)) dy; u E C~er(Y), (} E B(Y)} 
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where B(Y) :={BE £CXl(Y); 0:::; B:::; 1}. An elementary calculation using the 
second expression of Wq~ in ( 4) gives 

I= Inf { m W 1 (E) + (1- m) W 2 (E)- em + J(m) ; 0:::; m:::; 1 } , 

J(m) = Inf{f c82 + 1/2at:(u) · t:(u) + Bat:(u) ·a; 
y 

u E C~erCf'), BE B(Y), J B = m}. 

As in [11] p. 202, Fourier analysis yields 

J(m) 2: In!{ cm2 + (h- ¢) L:k'f"O e(k) 2 ; 

y 

Y E Y r--+ B(y) = 2:kEZ3 e(k) e 2i-rrk·y E B(Y)} 

which proves the quasiconvexity of W 1> if 0 :::; ¢ :::; h. 

Clearly, ( 4), (5) imply that W q>, 2: W q\2 if ¢ 1 > ¢ 2 , and that W q\ 

W 1; 2aa.a = Min (W1 , W 2 ) if¢ 2: 1/2aa ·a . Moreover, it is shown in [11] 
that the quasiconvexification and the convexification of Min (W1 , W 2 ) are 
respectively W h and W 0 . Thus, W 1> is not convex if 0 < ¢ and is not quasi
convex if h < ¢ , because quasiconvexification and convexification preserve 
the order. 

Remark 3.1. A rough way to define the strain energy function of a 
mixture of two phases described by the energy density functions wi ' in 
proportions x and ( 1-x), is to consider 

With Wi as in (3), it is shown in [11] that 

w,;nix(E, x) = Wo(E, x) = 1/2 a (E- a(x)) . (E- a(x)) + w(x) 

Thus, as announced previously, in order to account for interactions at 
a macroscopic level, some modelings ([6]-[9], [13]-[16], [19]) add a term de
pending on x, vanishing at x = 0,1. Their common proposal is cj;x (1- x) , 
hence they get Wq~ as free energy density function for the medium! However, 
the previous definition w,;nix presupposes constant and compatible strains in 
each phase, which is open to criticism. A better definition is 

Wbix(E, x) = Inf {1/\YI fy Xx(y)W 1 (E(u)) + (1- Xx(Y))W 2 (c(u))dy; 
Xx characteristic function JY Xx(y)dy = xiYI,u(y) = EyonaY} 
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It is proved in [11] that w;nix = Wh . Hence, adding a macroscopical term of 
interaction I x( 1 - X) yields a free energy equal to wh+l· Then the quasicon
vexity criterion of good modeling implies that I must be non positive. This 
sign, which is the opposite of what is widely used in the literature, corre
sponds exactly to what in [4] is termed, through microscopic considerations, 
mismatch energy. 

4 Double-well like structure of W ¢ and experiments 

From now on, I confine to the more interesting case 0 < ¢ :S h and will show 
that the lack of convexity of W q, accounts for some experimental results, 
which also guarantees a good modeling. Let 

w=w1-w2, H1={eES3 ; o:(e-ar).a=w} 

Some elementary manipulations, as in [11] pp. 205-207, provide the following 
geometric properties of the graph of W q,: 

Proposition 4.1. W q, is piecewise quadratic and differentiable on S3 . If 
lwl > ¢, W q, has only one absolute minimizer: a1 (resp. a2) if w > ¢ (resp. 
w < -¢), and no other relative minimizers. If lwl :S ¢, W q, has exactly 
two relative minimizers a 1 anda2: a1 (resp. a2) is an absolute minimizer 
if and only if w ::>: 0 (resp. w :S 0). 

Proposition 4.2. For each e1 of H 1 , the function W q, - L\ · , with 
L\ = o: (e1 - ar) , has exactly two absolute minimizers e1 and e2 = e1 +a . 

Since W q, is differentiable, the previous properties can be interpreted in 
terms of stress and strain. First, it appears that along all straight paths 
ELl in the strain space S 3 ' t E R f----+ ELl ( t) = Eo + t a ' pamllel to a, the 
derivative of the energy Wq,(ELl(t)) is not monotone. In other words, "the 
stress-strain relation is not monotone along ELl ". Thus it should be of interest 
to do such strain controlled tests which must be isothermal and biaxial (in 
this direction see [6], [14], [15]). These hard device tests seem difficult to 
do, conversely it is easier to do isothermal and biaxial loading experiments 
[3]. Leaving hysteresis considerations aside, it seems clear that two different 
equilibrium configurations may occur when a specimen of shape memory 
alloy is subjected to certain uniform biaxial extension loadings. The present 
modeling may account for this fact. If f2 is a reference configuration of the 
specimen and n the unit outward normal to 8f2 , the total energy read as 

h:(v) =I Wq,(E(v))dx- I En.vds = I Wq,(E(v))- E·E(v) dx 
n an n 

The previous propositions make it possible to use the arguments in [12] pp 
82-83 and to prove the following metastability theorem : 

Theorem 5.1. For every e1 E H 1 , there exists 8 > 0 such that for 
every E in a ball in S 3 of center E 1 = o: ( e1 - ar) and radious 8 , the 
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functional h; has two distinct L 1 -local minimizers (one of them being an 
absolute minimizer in H 1 (S?) 3 ). As E goes to E 1 , they converge strongly 
in L 1 towards "x f----t e1x" and "x f----t (e 1 +a) x" , absolute minimizers of 
h, in H 1 (S?) 3 . 

The L1 topology is rough : in L1 neighborhoods the displacements are 
near in the mean, but their strains may be very remote. These local, but 
non absolute, minimizers may be observed, they correspond to metastable 
equilibrium configurations : experimentalists [3] report that specimen can 
undergo large deformations from an equilibrium configuration to another one 
only by slightly hitting the strings of the device or through a small disturbance 
in the room. A similar metastability analysis, in the more difficult framework 
of finite strains, may be found in [1]. 

5 Conclusion 

I believe that all the foregoing arguments clearly show that the considered 
modeling is coherent and able to account some phenomena involved by phase 
transitions in crystalline solids. According to remark 3.1, a nice introduc
tion of this phenomenological and macroscopic modeling is adding a rational 
micro-macro definition of the energy function of a mixture to a woolly termed 
function, I x (1- x), I:::; 0 , of the volume fraction x of one phase. It should 
be interesting to derive this last term through a rational scale transition that, 
for instance, takes into account micro-scale surface interactions. 

Eventually, I thank my friend C. Lexcellent who told me about some 
pertinent earlier works. 
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1 Introduction 

Mechanics of Materials has experienced this last decade a considerable expan
sion. The widening, to non strictly mechanic sciences, of available knowledge 
and data about the material behaviour has permitted to get a global view of 
the phenomena accompanying the deformation processes. The use of innova
tive experimental techniques, the writing of consistent theoretical framework 
and the recourse to high-performance numerical methods allow to analyse, 
to understand and to simulate the materials behaviour. Two research areas 
are particularly active these last years. On the one hand, the analysis of the 
microstructure of materials reveals the phenomena associated with the defor
mation process, and the use of scale transition techniques permits to integrate 
this description and to derive a more valuable macroscopic modelling. On the 
other hand, these phenomena often require variables that complete the classi
cal displacements, strain or efforts of the mechanics. The taking into account 
of a temperature or a volumic fraction of phase in the constitutive equations 
implies the modelling of couplings between variables and the derivation of 
an adapted framework. The interest of this approach is again to get a more 
valuable description of the material behaviour, and also to use these addi
tional variables as real tracers of the deformation process of the material. 
In this paper, we first present the classical framework of Thermodynamics of 
Irreversible Processes, and more particularly the so-called Generalised Stan
dard Materials approach, putting the emphasis on the modelling of thermo
mechanical couplings and their experimental estimations. Then, after a brief 
review of the various works carried out in the team Thermomechanics of 
Materials of the LMGC, we will detail two applications, one dealing with a 
multiscale analysis of the thermomechanical behaviour of Shape Memory Al
loys, and the other connected with thermal and dissipative effects associated 
with fatigue of metallic alloys. 
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2 A convenient thermomechanical framework 

A convenient thermodynamic framework is the Continuum Thermodynamics 
(Germain, 1973, Germain, 1983), that postulates the local state axiom and 
considers the material both as a continuum and as a thermodynamic system 
described by a set of state variables. More precisely, we use the formalism 
of Generalised Standard Materials (GSM) (Halphen, 1975) for which the 
constitutive equations can be derived from a thermodynamic potential and 
a dissipation potential. The chosen set of variables is {T, c:, a} , T being the 
temperature, c: a strain tensor and a standing for all the other variables. The 
two principles of thermodynamics give the following local equations, 

pe = (j : E; + r e - div q (1) 

ps- ~ + div (~) ?. 0 (2) 

where e, a-, q, s, p and re stand for the volume internal energy, the stress 
tensor, the heat influx vector, the specific entropy, the mass density and the 
external heat supply, respectively. 

Classically, the total dissipation d is introduced through the Clausius
Duhem inequality (3), and is generally split into an intrinsic dissipation d1 
and a thermal dissipation d2 . Each of these two dissipations is supposed to 
be non negative. 

. . . q dT d>O a- : c: - pe c: - pe a - -gra = -
)C "' T T - (3) 

q 
and d2 = - T gradT (4) 

Using the formalism of GSM, a thermodynamic potential '1/J(T, c:, a) (spe
cific Helmholtz free energy) and a dissipation potential t.p(gradT, E:, a) are 
introduced. Their derivatives with respect to the state variables and their 
time derivatives give the state equations (5a) and the evolution equations 
(5b). 

(5) 

In these last equations,-A represents the thermodynamic force associated 
to the state variable a , such as the product - Aa is the part of dissipated 
energy corresponding to the mechanism described by a . 
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The local heat conduction equation can be derived from the preceding 
expressions, 

pCT + divq = d1 + pT'l/J,TE: i + pT'l/J,ro:: a+ re (6) 

where C denotes the specific heat capacity. Assuming a isotropic conduc
tion law, (6) becomes 

(7) 

where e is the temperature variation around the equilibrium temperature 
T0 , (8 = T- T0 ), k is the coefficient of thermal conduction and wh the volume 
heat source generated by all the terms in the right hand of equation (6). 

This last term can be experimentally evaluated using temperature fields 
given by infrared thermography (see ( Chrysochoos, 1995) fore more details). 
Another interesting experimental technique is the digital image correlation; 
it consists in correlating speckle images obtained by an optical camera to 
derive fields of displacement and strain. These two valuable techniques, pro
viding thermal and mechanical fields, can be used to evaluate the various 
terms involved in wh, and energy balances can be carried out. 
This thermomechanical framework and these experimental devices have been 
used to investigate the behaviour of various materials: elastoplasticity in 
metallic alloys, thermovicoelasticity of polymers, phase change in shape mem
ory alloys, localisation of thermomechanical fields (bands or necking), damage 
and unilateral effects in concrete for example. Two of these applications are 
detailed in this volume (Huon, 2001, and Muracciole, 2001). 
We now focus on two particular studies where thermomechanical couplings 
have a great significance. The first one deals with Shape Memory Alloys 
and requires a multiscale approach, and the second one is concerned with 
analysing of thermal and dissipative effects associated with fatigue of metal
lic alloys. 

3 Multiscale approach of the thermomechanical 
behaviour of SMA 

SMA may undergo remarkable microstructural transformations: they may 
change the structure of their crystallographic lattice under mechanical and/ or 
thermal loadings. This transformation, called martensitic transformation, is 
displacive in the sense that it corresponds to a collective displacement of 
atoms, and is considered as a first order phase transition described by a 
latent heat of phase change. Furthermore, the transition domain of SMA is 
generally close to the room temperature and thus is relatively easy to detect 
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Fig. 1. Two charact eristic views of a polycrystalline sample of CuZmAl defining 
the mesoscopic scale 

and observe. Finally, and from a more practical point of view, the number of 
applications using SMA properties grows day after day. 

One of the difficulties in the modelling of SMA behaviour consists in the 
choice of the description scale. In fact, three length scales can be introduced , 
starting from the crystallographic lattice level ( microscopic scale) up to 
the macroscopic scale of the sample, with an intermediate mesoscopic scale 
corresponding to the grain of t he polycrystal or to t he monocrystal (figure 
1). 

Some authors have systematically studied the potential microstructural 
arrangements (twinning) or rearrangements mechanisms due to straining 
(variants reorientation) when the material is in mechanical and thermody
namical equilibrium (Ball, 1987) . Valuable results were obtained with good 
correlation with metallographic observations, but the connection with macro
scopic behaviour seems difficult, especially when kinetic of phase change is to 
be modelled. Other authors (Auricchio, 1997, Fn§mond 1993, Lexcellent 1991 , 
Patoor, 1987) were interested in the phase transition itself from a macro
scopic point of view, that is pseudoelasticity, self-accommodation, one-way 
or two-way shape memory effects, but their works do not take into account 
neither microscopic considerations nor thermomechanical couplings due to 
phase transition. Following these works, we first present a phenomenological 
macroscopic model based on the analysis of t hermomechanical couplings. 
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3.1 A first macroscopic analysis and modelling. 

This modelling (Peyroux, 1998) is based on experimental results, obtained 
from a thermomechanical device, which underline the main role played by the 
temperature variations induced by the deformation. The detailed analysis of 
the associated energy balances shows that the dissipated mechanical work 
(i.e. intrinsic dissipated energy) remains very small (less than 2%) compared 
with latent heat of phase change, so that the temperature variations are es
sentially due to stress-induced phase transition. 
On the basis of these results, a macroscopic modelling was proposed, that 
assumes an null intrinsic dissipation, takes account of thermomechanical cou
plings and, of course, considers anisothermal deformation processes. 
For the sake of simplicity, only two self-accommodating variants of marten
site are considered. Thus the set of state variables is{T, c, x 1 , x2} , x 1 and x 2 

being the volume fraction of the two variants. The strain tensor can be split 
into three parts, respectively due to elastic, thermal, and phase transition 
effects: 

(8) 

In equation 8, a stands for the thermal expansion coefficient and the 
tensor f3v characterises the phase change strain associated with the variant 
v . To ensure the self-accommodation property, we suppose (31 = - (32 = (3 , 
with Tr ((3) = 0. 

According to the experimental results, the dissipation potentialrp is iden
tically equal to zero, and the thermodynamic potential is derived from the 
classical thermoelastic potential plus a specific part due to phase change Wch· 

(9) 

In equation 9, the indicator function Iv ensures physically admissible val
ues to x 1 and x 2 . Using the thermomechanical framework presented in section 
2, we can easily derived the constitutive equations: 

(10) 

pCB- kf18=-Toaas+pPxv (11) 

In equation 9, a stands for the elasticity modulus tensor and in equation 
10, L represents the latent heat of phase change. Furthermore, the nullity of 
the dissipation potential ¢ implies the nullity of the thermodynamic forces 
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associated to x 1 and x 2 , and thus gives supplementary inequalities connect
ing the stress tensor, the temperature and the volume fractions of martensite. 
This defines the transition domain (figure 2) , giving the proportion of austen
ite (A) and of the two variants of martensite (M1 and M2 ) . 

Fig. 2 . Transition domain 

This basic model gives a correct description of the main characteristic 
phenomena of SMA: pseudoelasticity, for high temperature behaviour, and 
reorientation effects for lower temperature. One of the most interesting results 
is in fact the prediction of temperature variations in the material. In agree
ment with the experimental results, these variations are found to be non 
negligible and of the same order of magnitude t han the transition domain 
width. The t aking into account of t he anisothermal feature is then unavoid
able and is the only way to predict accurately the transformation kinetic and 
the stress and temperature variations. As a direct consequence, t he classi
cal representation, in a stress-strain plane, of a pseudoelasticity test is not 
adequate, insofar as one can imagine several evolutions in the stress-strain
temperature space giving the same projection in the stress-strain plane (see 
figure 3). 
The main drawback of this purely macroscopic modelling is t hat it refers 
to volumic fractions of martensite, characterised by their orientation tensor 
{3 which is tightly connected to the microscopic scale. To correct t his lack 
of scale correlation, a scale transition can be used in order to derive the 
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macroscopic behaviour from a mesoscopic model consistent both with the 
crystallographic data and the thermomechanical couplings. This mesoscopic 
modelling is described in the next part and the transition scale aspects will 
be presented in the following. 
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Fig. 3. Stress-strain-temperature evolution during a pseudoelasticity test 

3.2 A mesoscopic thermomechanical model 

In this part we aim to derive a set of constitutive equations appropriate for 
the behaviour of a grain of a polycrystal. To this end, we assume that each 
grain of the polycrystal behaves as a monocrystal and interacts with the ad
joining grains. In the following, the mesoscopic model takes advantage of the 
crystallographic description of change phase at the microscopic level and of 
experimental results obtained on monocrystalline sample (Balandraud, 2000) . 

We consider the set of variables{T,c:, xk} , where Xk stands for all the 
variants of variants of martensite required in the considered grain. The free 
energy IJt is chosen convex but not strictly convex with respect to c: (figure 4) 
in order to provide a strain plateau under zero-stress (reorientation effect). 
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Fig. 4. Mesoscopic free energy 

In fact it is more convenient here to deal with the marginal energy~, the 
definition of the transition domain resulting from this definition. 

(12) 

Even if the thermal effects due to dissipation are difficult to measure, 
it is legitimate to suppose that a slight irreversibility accompanies the phase 
change. Consequently, we propose to chose the following dissipation potential: 

(13) 

The existence of t erms in :i;k in the expression of the transition diagram 
expresses a dependence on the sense of transformation (M ---+ A or A ---+ M). 
Figure 5 shows the results of this modelling in terms of strain-strain relation 
and temperature evolution. The comparison with the non-dissipative case 
underlines tha t dissipation has a significant effect on the hysteresis area of 
the mechanical curve but a slight influence on the temperature evolutions. 

Finally, t his set of constitutive equations allows a correct prediction of 
pseudoelasticity, reorientation effect and recovery strain; it predicts phenom
ena such as asymmetry in tension-compression tests and time effects due to 
heat diffusion. 

3.3 Towards a macroscopic model 

We now focus on the macroscopic behaviour of a SMA polycrystalline ag
gregate. We again suppose that each grain behaves as a monocrystal and 
that the macroscopic behaviour can be derived from the thermomechanical 
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Fig. 5. Numerical stress-strain curve and temperature evolution in a pseudoelastic 
test 

response of a representative volume element (RVE). The observation of a 
polycrystalline sample by means of electronic and optical microscopy, allows 
to gather data on the crystallographic texture, the shape and the statistical 
representation of the grains in the RVE (Figure 6). We also consider that the 
grains differ only by their crystallographic orientation. 

Fig. 6. RVE of a polycrystalline sample of CuZnAl SMA obtained by image analy
sis. Different patterns and colors stand for different crystallographic orientations 

It is established, (Suquet, 1984) that for microscopic constitutive equa
tions containing internal variables, "the homogenized law does not reduce to 
a single equation" on the macroscopic domain. "The knowledge of the macro
scopic law requires as data the (mesoscopic) state variables". An alternative 
and pragmatic attitude is to link the macroscopic thermomechanical variables 
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together, by prescribing thermomechanical loading and numerically solving 
the problems on the RVE. The RVE is considered as a virtual sample, and 
the finite element code as a virtual thermomechanical testing device. 
The set of variables used at the mesoscopic level is (T, c, xk), and additional 
variables such as the stress tensor CJ or the heat influx vector q can be deduced 
from the initial set owing to the transition diagram or the heat equation. 
On the macroscopic level, we consider the classic and natural macroscopic 
strain and stress tensors E and E defined as average values of c and cr: 

E =< c > and E =< cr > (14) 

In a first time we assume a quasi-homogeneous mesoscopic temperature 
field, the value of which is identified to the macroscopic temperature. Note 
that the quasi-homogeneity of the temperature field does not imply the ho
mogeneity of its gradient.At this point EPc , part of macroscopic strain due 
to phase change, is given by: 

(15) 

where A hom is the macroscopic tensor of elasticity, and aJwm the macro
scopic thermal expansion coefficient. 

It remains to define X : macroscopic equivalence to the volume proportion 
of phase change. Deriving L, macroscopic latent heat, from pL = (pL) , we 
can propose as a definition of X : 

pLX = (pLx) (16) 

This macroscopic proportion has to be regarded as an energy indicator 
of the advancement of phase change. The value of X is 0 if the polycrystal 
is completely austenitic, and reaches 1 if completely martensitic. However a 
value between 0 and 1 can be reached under several microscopic configura
tions. 

Then, it is of some interest to express EPc as: 

(17) 

where ;Jhorn represents the maximum potential strains associated to phase 
change. 
A convenient set of macroscopic variables being established, we finally present 
an example of the results of finite element simulations on the RVE (Balan
draud, 2000). 

We numerically performed a pseudoelasticity test consisting of a load
unload path at a room temperature upper than TA and the different results 
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are plotted in figure 7. The imposed strain is increased from point a to point 
d, and maintained at a certain level between points b and c. In the particu
lar stage be, we can observe the role played by thermomechanical couplings. 
The material keeps on transforming (X increases), the stress relaxes while 
the temperature returns to the imposed value. Concerning the entire test, 
the evolution of the different variables is consistent with experimental results 
obtained on polycrystalline SMA. This macroscopic behavior is of course 
different from the monocrystalline one and corresponds to the particular or
dering of grains chosen in the RVE. 
The possibilities of this approach have been widely developed in (Balandraud, 
2000). For instance, low-temperature tests allowed the determination of the 
value of the macroscopic recoverable strain due to variant reorientation at 
zero stress. This numerical tool was of great use when investigating multi
axial behaviour of polycrystalline SMA and when studying the influence of 
various dissipation potentials. 

4 Thermal and dissipative effects associated with 
fatigue of metallic alloys. 

Statistical considerations on time-consuming and expensive tests are needed 
to evaluate the fatigue resistance of materials and structures. Increasing pres
sure for shorter design assessment time in industry leads researchers to de
velop new short-time methods of fatigue limit determination. 
In this aim, variations of specimen t emperature during fatigue tests have been 
studied (Bousseau, 1998, Luong, 1998, La Rosa, 2000, Liaw, 2000, Galtier, 
2001). These observations incited researchers to propose a new methodol
ogy for the determination of fatigue limit. This methodology is based on the 
analysis of thermal effects associated with fatigue testing. However, some of 
its application are still problematic. Indeed, the observed heating does not 
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reveal intrinsic material behaviour as it depends on various parameters such 
as heat diffusion. 
Therefore, we present in the following a calorific approach of fatigue phenom
enon rather based on heat sources analysis than on thermal effects study. The 
aim is to evaluate dissipation associated with the observed heating and to ex
amine the possible couplings between thermoelasticity and fatigue. 

4.1 Thermal effects associated with fatigue testing 

Preliminary observations Since years 30, fatigue specimen temperature 
variations have received great interest. These temperature variations have 
been measured either by thermocouples or, more recently, using infrared 
thermography. All the authors (Bousseau, 1998, La Rosa, 2000, Liaw, 2000) 
agreed on the following observations : 

-the greater the applied stress and the frequency, the higher the temper
ature increase during fatigue test. 

-for given stress and frequency, the average specimen temperature in
creases during the first part of the test (first thousands cycles), then remains 
constant (steady-state conditions) until an abrupt increase immediately prior 
to failure. 
This suggests that, concerning temperature, the few first thousands cycles 
are relevant and leads to consider this steady-state temperature as a repre
sentative parameter to characterize fatigue. 

Short-time measurements of fatigue limit using thermal analysis 
Some authors derived a new method for the determination of the fatigue 
limit from these preliminary observations. This methodology is based on the 
evolution of the steady-state temperature as a function of the applied stress 
amplitude (see (La Rosa, 2000, Luong 1998) for detailed procedure). A spec
imen is successively loaded at different stress levels for about 104 cycles. For 
each loading level, the steady-state temperature iJ.T (supposed to be reached 
after 104 cycles) is measured. The development of iJ.T the steady-state tem
perature, plotted as a function of the stress level, exhibits a well-marked 
break. The stress amplitude corresponding to this break appears to be close 
to the fatigue limit as evaluated with usual methods. 
This new method offers considerable interest compared to usual techniques: 
it allows to obtain reliable results using a very limited number of specimens 
in a very short time. In addition, it if:> easily applicable to f:ltructures. Con
sequently, this methodology, which validity has been confirmed by differ
ent applications, has been adopted in industrial development (Berard, 1998). 
However, some applications, concerning aluminium alloy for instance, are still 
critical. Indeed, in that case, the steady-state temperature does not show a 
clear evolution with respect to stress levels. Hence, it if:> impossible to estab
lish an obvious relation between temperature variation" and fatigue limit. 
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Anyway, even if in most cases, temperature seems to be a relevant parame
ter to characterize irreversibilities that occur during fatigue testing, it does 
not express the intrinsic behaviour of the material. Actually, temperature 
depends on the specimen geometry, on the external heat exchange conditions 
and on the homogeneity of the studied phenomenon. In order to take into 
account these various structural effects, we propose to analyse the fatigue 
mechanisms considering heat sources instead of temperature. 

4.2 Dissipation and couplings 

The set of state variables to be used in the above-mentioned thermomechan
ical framework is (T, c:, f), where f is a scalar parameter standing for the 
state of fatigue in the material. 
The local heat conduction equation is then : 

pCB- k£18 = d1 + pT'l/J,rc:: E + pT'l/J,rt: j (18) 

Supposing the mechanical irreversibilities only stem from fatigue effects 
(i.e. no irreversible stress), the intrinsic dissipation can be written: 

(19) 

Assuming that the slight temperature variations ( (} < < T0 ) does not affect 
the state of fatigue but, on the contrary, that the state of fatigue can modify 
the thermoelastic response of the material, we can write: 

(20) 

'1/J,rc: = b(f) (21) 

In the case of a one-dimension thermoelastic behaviour including fatigue 
state variable, the strain becomes: 

(J 

c: = E(f) + a(f)e (22) 

where E is the Young modulus, and a the thermal expansion coefficient. 
Equations (20) and (22) lead to: 

(Ea) ,f = 0 (23) 
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that is to say b(f) is constant. So, when E decreases, o: increases, and the 
strain amplitude gets greater as the fatigue process progresses. Thermoelastic 
sources amplitude will consequently increase: 

(24) 

Then, it is possible to estimate the thermoelastic sources amplitude for 
several loading cycles, supposing the evolution off is slow, that is the vari
ations of f can be neglected. Steady-state temperature reached after a load 
step of some thousands cycles will be associated with average dissipation. 

4.3 Experimental 

Fatigue tests were performed on a servohydraulic machine with a 25 kN load 
cell. These tests were conducted at 10Hz with a load ratio R=O.l. Successive 
load steps of 104 cycles were carried out on a same specimen. Surface tem
perature images of the tested sample were provided using an infrared CCD 
camera (short waves, NETD-25mK). High-speed data acquisition capabili
ties are available at 50 Hz with a full-frame (256*256 pixels) and at 180 Hz 
with a narrow window (128*128 pixels). An infrared image processing has 
been developed in order to deduce the distribution of heat sources from the 
surface temperature measurements by the mean of equation (18). This data 
processing is based on local least-square fitting (Wattrisse, 2000). Hypothesis 
needed for its application as well as validation checking are also presented in 
( Chrysochoos, 2000). 
Specimens were fiat (1 mm thick): this allows to consider the surface tem
perature as the average thick-wise temperature. All specimens were coated 
with a black spay paint to maximise their emissivity. In addition, the paint 
coating reduces surface reflections and ensures uniformity of the specimen 
response. 
A stainless steel (3041) and an aluminium alloy (AU4G) were studied. For 
these two materials, thermophysical characteristics needed to determine heat 
sources are given in table 1. 

Table 1 : Thermophysical characteristics of the materials 

Tth is a time constant related to the heat losses and characterises the 
lateral heat exchanges between the sample and the surrounding air. If the 
heat sources are assumed to be uniform, the laplacian operator can be reduced 
to a linear term. An equivalent time constant Teq is then defined : 

1 1 k ( 2 2) 
- = - + -C wa + Do 
Teq Tth p 

(25) 
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where w0 et flo are the first eigen-pulsations of the laplacian operator 
(Chrysochoos, 2000) In that case, steady-state temperatures are related to 
the average intrinsic dissipation: 

(26) 

Besides, temperature variations amplitude for a load cycle is: 

(27) 

with fr standing for the loading frequency. These temperature variations 
over one cycle are due to thermoelastic coupling. 

4.4 First experimental results 

During a load step (figure 8) , the specimen shows on the one hand an average 
temperature increase related to energy dissipation, and, on the other hand, 
sinusoidal fluctuations around this average value. If all other couplings are 
neglected as supposed in §4.2, these fluctuations are induced by thermoelastic 
effects. 

9(" c) 

Fig. 8. Experimental evolution of temperature during a fatigue cyclic loading 

Figure 9 presents results obtained for the whole load steps in the case 
of two stainless steel specimens. Steady-state temperature evolution is fully 
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Fig. 9. Evolution of L1T for the A304L steel 

consistent with literature results: a well-marked break in the curves is ob
served. 

From a calorific point of view, (Figure 10), thermoelastic sources am
plitude evolution is linear for the first load steps, as expected in classical 
thermoelasticity (constant Young modulus and constant thermal expansion 
coefficient). After these first load steps, a clear change is noted and might be 
attributed to coupling mechanisms between fatigue and thermoelasticity ( cf. 

equation 27). 

This change in the thermoelastic sources amplitude evolution occurs at the 
same stress level as for temperature curves break. At last, it is worth noting 
that average dissipations d1 are about 103 times lower than thermoelastic 
sources for a loading frequency fr = 10Hz . These average dissipations have 
been estimated using equation 26. 

The results obtained on two aluminium alloy specimens are shown in fig
ure 11. The lack of clear trend when plotting average dissipation (i.e. steady
state temperature, see equation 26) versus stress level is confirmed for this 
type of material. However, thermoelastic sources development is much more 
regular and exhibits a marked break for one of the specimens, as it was ob
served for stainless steel. 

It must be noted that the second specimen has been tested at the last 
stress level for more than 107 cycles without fa iling. This, combined with the 
strictly linear development of sources amplitude, suggests the fatigue limit 
has not been reached in that case. 
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4.5 Prospects 

The scattering of these first results provided by a few tested specimens must 
be considered from the statistical point of view associated with fatigue test
ing. It would be premature to point out any conclusion. Nevertheless, the 
analysis of fatigue effects via thermoelastic sources amplitudes appears to be 
attractive. For instance, in the case of aluminium alloys, the data are more 
consistent when reported in terms of sources amplitudes than in terms of 
temperature. 
It would be of high interest to develop the same kind of approach considering 
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not only average dissipation for a load step but also instantaneous dissipa
tion. This could be performed by reducing significantly thermal drift during 
the whole test or by increasing load frequency. Concerning modelling, ther
moelastic sources and dissipation are related respectively to the variable f 
and its time derivative. These independent and complementary calorific data 
could be used to identify this fatigue variable and its evolution law. 
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Abstract 

Several in vivo methods are currently available for assessment of human body 
composition. A comprehensive and updated review may be found in [1]. The 
bioelectrical impedance analysis is probably, at present, the most frequently 
used method, due mainly to the relatively inexpensive cost of the basic instru
ment, its ease of operation, and its portability. The bioelectrical impedance 
measurements are performed using four electrodes: usually two are attached 
at the wrist and two at the ankle. A weak alternating current is passed 
through the distal electrodes, while the voltage drop across the body is mea
sured using the proximal electrodes. The body's impedance Z is given by 
the ratio between the voltage drop and the applied current. Impedance mea
surements are made over a wide range of frequencies. A fundamental issue 
is that Z depends on the frequency f of the applied current, and has both 
resistive and reactive components: Z = R + jX. The reactive component X 
is assumed to be related to cells, which act like capacitors. The experimental 
curve f f-+ Z(f) in the complex plane is referred to as impedance locus. It 
can supply estimates of the extracellular, intracellular and total body water 
space, and hence it has a considerable clinical significance (e.g., for renal or 
obese patients), provided it is interpreted on the basis of a clear and rational 
model [2]. 

A number of electrical circuits have been used to model the impedance 
locus [3]. However, it seems obvious that a rational interpretation of the 
impedance locus must be based on the homogenization theory, because a 
typical cell dimension is ten micrometers, while the measured impedance is an 
overall property of the whole body. Following this idea, an ideal tissue, made 
of a periodic array of unit elements V, each containing a cell V1 , separated 
from the extracellular space V2 by the plasma membrane S, is considered. 
The material inside Vi has a conductivity tensor ui (i = 1..2). The plasma 
membrane has a capacitance C and a conductance G per unit surface. The 
unknown electric potential ¢(x, t), which depends on position x and time t, 
is represented as the sum of a linear part -E(t) · x, where E(t) is a given 
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electric field, and a V-periodic part ¢P(x, t), which is assumed to be H 1(Vi) 
(i = 1..2), but may be discontinuous across S. The governing equations are: 

div(ui'V¢)=0 inVi, i=1,2 

[(u;V'¢) · n] = 0 on S 
d 

(o-1 V'¢) · n = G[¢] + C dt [¢] on S 

(1) 

(2) 

(3) 

where n is the unit normal vector to S, oriented toward V2 , and [·] denotes 
the jump of the enclosed quantity across S. 

It is pointed out that problem (1)-(3), in the particular case C = 0, is well 
known [4,5], because it models heat conduction in a mixture of two conduc
tors in the presence of a contact resistance between phases. A related problem 
was considered in [6,7], modeling the elastic behaviour of composites under 
the assumption that normal and tangential components of interface displace
ment jumps are proportional to the respective interface traction components. 
However, the particular case C = 0 leads to an elliptic problem, whereas in 
the present situation ( C =J 0), the problem is parabolic, with a concentrated 
capacity. To the authors' knowledge, homogenization of a parabolic problem 
with a concentrated capacity has received little attention in the literature. 

The problem is approached by a Fourier transform with respect to time 
t. Of course, the unknown of the transformed problem, that is the Fourier 
transform ¢(x, f) of ¢P(x, t), is a complex quantity. As a consequence, it 
is convenient to assume as unknowns both the real and the imaginary part 
of ¢ = 'P + Jx. New variational principles involving 'P and x are derived, 
and are recognized to be saddle-point principles. In order to build up min
imum principles, partial Fenchel conjugates of these saddle-point principles 
are performed. The minimum principles thus obtained are used to bound, for 
each value of the frequency variable J, the homogenized impedance. Voigt
Reuss-type bounds, Hashin-Shtrikman-type bounds, and bounds based on 
finite-element computations are established . 
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Abstract. This paper deals with passive vibration damping of piezoactuated elas
tic structures. An enhanced resonant shunt electric circuit, which is a generalization 
of the shunt circuits proposed in the literature until now, is analyzed from a theo
retical point of view. A modal model is used to evaluate the performances of this 
shunt in damping structural vibrations; in particular, a numerical optimization of 
the electrical components is performed according to the pole placement technique. 
It is shown that the new circuit presented here is able to partially improve the 
performances of the shunt circuits previously proposed in the literature. 

1 Introduction 

It is well established that piezoelectric sensors and actuators are very suitable 
for vibration damping and noise suppression of light elastic structures [14]. 
Many papers in the literature are devoted to the study of active damping 
(e.g. [9,7,10,2]) and passive damping (e.g. [12,11,15,16,18,17]) of piezoactu
ated structures. The topic of this paper concerns with the latter methodology, 
built up by connecting the electrodes of a piezoelectric element, bonded on 
a vibrating structure, to a shunt electric circuit, as shown in figure 1. The 
shunt circuit used in a passive damping arrangement can be purely resistive 
or resonant; in the former case the passive control adds a small damping on 
a wide frequency band whereas in the latter case the resonant circuit can 
be properly tuned on a targeted structural eigenmode in order to obtain a 
very effective control in a narrow frequency band, centred on the selected 
structural eigenfrequency. An attempt in optimally damp several structural 
eigenfrequencies by using a single piezoelectric actuator and a multi-resonant 
shunt circuit is performed in [13] but it presents some difficulties in tuning 
the different electrical components due to their mutual influence. Different 
types of resonant shunt circuits have been proposed in the literature; the 
simple RL series shunt circuit [12], the RL parallel shunt circuit [18], and 
the shunt circuit composed by the parallel of a RL series branch with a ca
pacitor C [15]. Those circuits have been analyzed in a unified manner in 
[6], and it turned out that the RL series shunt circuit is the most effective 
in damping structural vibrations. In practical applications some problems 
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arise concerning the choice of the inductance L when a RL shunt circuit is 
employed, because the tuning value of the inductance can attain several hun
dreds of Henry when passive control of low frequency structural eigenmodes 
is required. This problem can be overcome by using a synthetic inductor [8], 
which is able to furnish the required inductance. A negative feature of the 
synthetic inductor is that an high inductance value implies an high value of 
the inductor electric resistance, which can be higher than the optimal value 
of resistance required by the control law. Another problem concerns the use 
of the shunt circuit in a hybrid control; in this case the active control enforces 
high values of electric potential across the synthetic inductance, which causes 
a malfunctioning of this component and consequently a non effectiveness of 
the damping system [1]. To avoid this defect it can be useful to modify the 
shunt circuit in order to reduce the tuning value of the inductance, as at
tempted in [15], where the addition of a capacitor C in parallel with the RL 
series branch reduces the tuning value of L by a factor 1 + o:, where o: is the 
ratio between the external capacity C and the inherent piezoelectric capacity 
Cp. The negative effect of this solution is that the reduction of the tuning 
inductance implies also a reduction of the attained damping, as analytically 
and experimentally shown in [6]. In this paper a new shunt circuit is proposed 
and analyzed, in order to look for a compromise between the sake of reducing 
the tuning inductance L and the sake of having an effective damping system. 
The considered shunt circuit, as shown in figure 2, contains the parallel of a 
R 2 L branch and a R 1 C branch, in series with a resistor R 3 . The capacitor 
C is useful to reduce the tuning value of L, as in [15], whereas the resistors 
R 1 , R 2 and R 3 must be chosen in order to optimize the energy dissipation 
and consequently maximize the damping effect on the controlled structure. 
A modal model of the controlled structure, containing only the structural 
eigenmode to be controlled, is used for the analysis of the passive control as 
in [6]. The optimization of the electrical components is based on the pole 
placement technique [12]; accordingly, the electrical parameters are chosen in 
order to move as to the left hand side of the complex plane as possible the 
system poles. Due to the complexity of the shunt circuit, the optimization 
is performed by numerical simulation, as shown in the next sections. The 
analysis shows that the proposed shunt circuit is able to partially improve 
the previously proposed solutions, as it turns out from the comparison with 
the results relevant to the RL-C shunt circuit. 

2 The model 

In this section a modal model is considered, able to describe the passive 
vibration damping of a linearly elastic piezoactuated structure, as shown 
in figure 1. As mentioned in the introduction, an oscillating shunt circuit 
acts on a targeted eigenmode of the controlled structure. Near a resonance, 
the mechanical behaviour of a vibrating structure can be well described by 
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Fig. 1. Passively controlled piezoactuated structure 

taking into account only the modal displacement relevant to the targeted 
structural eigenmode. Accordingly the coupled behaviour of a passively con
trolled piezoactuated structure is described by the following set of ordinary 
differential equations: 

my+ diJ + kmmY + kmeV = 0 

kmeY - Cpv = -q 

F(v)+9(q) =0 (1) 

where y is the modal displacement, v is the difference of electric potential 
between the piezoelectric electrodes, q is the electric charge on the elect rodes, 
kmm is the modal stiffness, kme is the modal piezoelectric coupling stiffness, d 
is the modal mechanical damping coefficient, CP is the piezoelectric inherent 
capacity, F and g are linear differential operators with respect to the time t 
and, finally, a dot means derivation with respect to time. The first equation 
in (1) is the balance law of the modal forces acting on the structure, the 
second equation is the electric charge balance law on the piezoelectric elec
trodes and the last one is the Kirchhoff equation relevant to the oscillating 
electric shunt circuit, which relates the electric charge q to the voltage v. It 
can be noted that kmeV and kmeY are the coupling terms due to the converse 
and direct piezoelectric effect, respectively; in particular the former is the 
modal force on the structure and the latter is the electric charge induced on 
the electrodes due to the coupling between strain and electric field, which 
characterizes piezoelectric materials. A numerical method able to estimate 
the modal parameters in system (1) is given in [3], employing a finite element 
formulation and a modal reduction. The coupled system is schematically re
ported in figure 2, where the mechanical oscillator in the left side represents 
the controlled structural eigenmode whereas, on the right side, the electric 
shunt circuit is drawn; the piezoelectric actuator is electrically equivalent to 
the parallel of the capacitor Cp and the electric charge generator - kmeY (see 
equation (1)2). The capacitor C is used to reduce the tuning value of the 
inductance L [15]. The resistances R1 , R2 and R3 must be chosen as to op
timize the electric current flows in the different circuit branches in order to 
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maximize the power consumption and the damping effect on the vibrating 
structure. The shunt circuits proposed in previous papers concerning piezo
electric passive vibration damping can be easily recovered as subclasses of the 
present shunt circuit; in particular letting R3 ---+ 0 and R 1 ---+ oo the simple 
RL series circuit is recovered, letting R1 ---+ 0 and R 3 ---+ 0 the enhanced shunt 
circuit analyzed in [15,6] is obtained and finally, letting R3 ---+ 0 , R 2 ---+ 0 and 
C---+ oo the present circuit reduces to the RL parallel shunt circuit proposed 
in [18]. 

y v 
a 

b 

Fig. 2. Electromechanical coupled structure 

In order to analyze the considered electric shunt circuit, system (1) is 
rewritten in the Laplace domain; assuming vanishing initial condit ions, the 
following equations are obtained : 

(ms2 + ds + kmm)Y + kmeV = 0 

kmeY - Cpv = -q 
Z(s)sq+v=O (2) 

where s is the Laplace variable, t he overlined unknowns are referred to the 
Laplace domain and Z(s) is the shunt circuit impedance, given by: 

L(R1 + R3)Cs2 + [L + R1R2C + R3(R1 + R2 )C]s + (R2 + R3) 
LCs2 + (R1 + Rz)Cs + 1 

From equation (2)2 the following expression of v can be written: 

- k - q + me -V = - --y 
CP CP 

(3) 

(4) 

Substituting equation ( 4) in system (2) the following algebraic system is 
obtained: 

( 
2 k 2 . ) kme ms + ds + kmm + ~ 'fJ + --q = 0 

CP CP 

( 1 ) kme 
sZ(s) + Cp q + Cp 'fj = O (5) 
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In order to perform an optimization of the electrical components of the shunt 
circuit it is useful to consider a dimensionless version of the governing sys
tem (5). Assuming that t = tT, y = i}Y, 7j = ijQ, where a capital letter is 
used to distinguish dimensionless quantities and a tilde is used for the dimen
sional scales, and remembering that the Laplace variable s has the physical 
dimension of the inverse of time, system (5) reads as: 

(S2 + vS + 1 + K:2)Y + K:Q = 0 

[wmCpSZ(wmS) + 1]Q + K:Y = 0 

where the following positions are understood: 

- 1 
t=

Wm 

d 
v = --=== 

vmkmm 

(6) 

(7) 

In equations (7) Wm = Jkmm/m is the mechanical eigenfrequency at shorted 
electrodes (v=O in equation (1)1) and has been chosen for the definition of 
the time scale t, v > 0 is the dimensionless mechanical damping coefficient 
and, finally, K: > 0 is the modal piezoelectric coupling coefficient. The di
mensionless system (6) holds for any choice of the external shunt circuit; in 
order to adapt this general system to the present case it is convenient to give 
a dimensionless version of the term WmCpSZ(wmS), therefore the following 
positions relevant to the electric components L, C, R 1 , R 2 and R3 are made: 

We - s: 
- -Ul 
Wm 

(8) 

where We = J1/(LC) and 6i, i = 1..5 are dimensionless quantities. In terms 
of the previous positions wmCpSZ(wmS) can be expressed as: 

(63 + 6s)S3 + [(1/62) + 6?626364 + 6?62(63 + 64)6s]S2 + [6?(84 + 8s)]S 
S2 + [8?82(83 + 84)]S + 8i 

(9) 

Accordingly, the following system of two algebraic equations can be written: 

(S2 + vS + 1 + K:2)Y + K:Q = 0 

(63 + 6s)S3 + [(1/82) + 8i826384 + 8i82(83 + 84)8s]S2 + [6i(84 + 6s)]S + 

+S2 + [8i62(83 + 84)]S + 6i)Q + [S2 + (8i82(83 + 64))S + 8i]K:Y = 0(10) 

System (10) contains seven dimensionless parameters; K: and v depend only on 
the mechanical structure and are given, whereas 8i, i = 1..5, are univocally 
related to the shunt circuit parameters L, C, R1 , R2 and R3 through the 
relations (8) and must be optimally chosen in order to maximize the damping 
effect due to piezoelectric passive control. 
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3 Shunt circuit optimization 

In this section the optimization of the electrical parameters relevant to the 
proposed shunt circuit is performed, according to the pole placement t ech
nique [12,5,6]. More specifically, these parameters are chosen in order to max
imize the exponential time decay rate of the solution of the governing system 
(10), which can be written in the time domain as: 

5 

L Ci(T) exp(AiT) (11) 
i=l 

In equation (11) Ai are the complex roots of the characteristic fifth degree 
polynomial relevant to system (10), whereas Ci are polynomials in T de
pending on the initial conditions. Accordingly, the optimization of the shunt 
circuit components is performed by maximizing the following expression: 

A = min{I~(Ai )l} (12) 
2 

where A denotes the exponential time decay of t he solution. The evaluation 
of A is now numerically performed by assuming K = 0.15 and v = 0, and the 
obtained results are compared with those reported in [6] and relevant to the 
case of RL series, RL parallel and RL-C parallel shunt circuits. In particular 
the effect of the components R 1 and R5 , which are not present in any of the 
previously considered shunt circuits, are investigated separately, in order to 
evaluate their influence in the passive control. For the sake of comparison 
with the results in [6] relevant to the RL-C parallel circuit, the value of the 
external capacitance C is fixed equal to the piezoelectr ic inherent capacity 
Cp, implying 82 = 1. In figure 3 the results are plotted relevant to the case 

Fig. 3. Exponential time decay rate coefficient il (a) and optimal value of 84 (b) 
versus 81 and 83; 82 = 1, Os = 0, ""= 0.15, v = 0 

in which the resistance R 3 is kept fixed to zero (implying 55 = 0) whereas R 1 
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(and therefore <53 ) is variable. In particular in figure 3-a the isolevel curves 
of the optimal exponential time decay A are plotted against <53 , R 1 and <51 ; 

in figure 3-b the corresponding optimal value of <54 is reported, proportional 
to the value of the resistance R 2 . From the numerical simulation it turns 
out that the exponential time decay A increases with the increasing of the 
resistance <53 , according to the following linear law A= 0.071 + 0.01(<53 - 0.1) 
whereas the optimal value of <51 slightly decreases and therefore the tuning 
value of the inductance L increases. The limit case <53 = 0 corresponds to the 
case of the RL-C shunt circuit , in which the tuning value of the inductance 
L is almost reduced by a factor 1 +a and A is almost reduced by a factor 
~with respect to the case of the RL series shunt circuit [6]. This latter 
case is recovered by taking the limit <53 -+ oo of the present solution. 

a) 
1.6 

~I 
01 

1.55 
1.55 

0.3 0.4 

Fig. 4. Exponential time decay rate coefficient A (a) and optimal value of 84 (b) 
versus 81 and 8s; 82 = 1, 83 = 0, K- = 0.15, v = 0 
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Os 

Fig. 5. Optimal exponential time decay rat e coefficient A versus 6s; 82 = 1, 83 = 0, 
K, = 0.15, ZJ = 0 
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In figures 4-5 the effect of the resistance R3 is investigated, keeping R 1 = 
0. It turns out that increasing 85 , the optimal value of 84 decreases (figure 4-b) 
and the optimal exponential decay A slightly increases till a limit value of 85 

(figure 5) for which 84 = 0 (figure 4-b); further increasing the value of 85 the 
attained damping A rapidly decreases since the value of 84 can't be lowered 
below zero. Moreover the optimal value of 81 increases with the increasing of 
8 5 (figure 4-a); the presence of the resistance R3 is then proved to be useful 
to further reduce the tuning value of L below the value obtained with the 
simple RL-C shunt circuit, corresponding to 85 = 0, without reducing the 
value of A. 

4 Conclusions 

In this paper a new oscillating shunt circuit for vibration damping by means 
of a passive electrical network connected to a linearly elastic piezoactuated 
structure has been theoretically analyzed. This circuit is a generalization of 
previously analyzed circuits in the literature. A modal model considering 
only the structural eigenmode to be controlled has been employed in the 
analysis of the passive damping arrangement. Dimensionless equations have 
been derived in order to describe the dynamical behaviour of the electro
mechanical coupled system; these equations are suitable to study a general 
kind of shunt circuit, whose transfer function is known. The optimization of 
the shunt circuit parameters has been numerically performed according to 
the pole placement technique. Some simulation results have been presented 
in order to show the influence of the electrical components on the attained 
damping and on the tuning value of the inductance L. The results show that 
the present circuit is able to reduce the tuning value of L more than the re
duction attainable with the RL-C parallel shunt circuit previously proposed 
in the literature, without decreasing the attained damping and can be suit
able in the implementation of a hybrid control using piezoelectric actuators. 
Future work could be devoted to the analysis of multi-resonant shunt circuits, 
for damping several eigenmodes at the same time by using a single piezoelec
tric actuator, and to the use of methods based on power dissipation, in order 
to perform an easier optimization of the shunt circuit electrical components. 
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Abstract. The near-cutoff propagation of free waves of flexure in a transversely 
isotropic, linearly electroelastic plate is studied, in two cases: for the simplest kine
matics, when both the mechanical displacement and the electric potential are taken 
linear in the thickness variable; and for the enriched, third-order kinematics. The 
dispersion curves are four in the second case, only two in the first. By a compar
ison with the first four dispersion curves obtained by solving the corresponding 
three-dimensional problem, it is shown that perhaps the most definite advantage of 
adopting an enriched kinematics is a better approximation of the low-cutoff curves. 

1 Introduction 

The purpose of plate theories is to construct simple and yet accurate two
dimensional models of a plate-like three-dimensional body. When dealing with 
free-wave propagation, as we here do, the accuracy of a given plate theory 
can be checked by comparing the dispersion curves the theory furnishes with 
the curves obtained by solving a corresponding three-dimensional problem. 

For plate theories deduced from a three-dimensional parent theory a rep
resentation for the possible kinematics is chosen a priori. Thus, the resulting 
plate, whose motion class is intrinsically less rich, is generally "stiffer" than 
the three-dimensional body it models; in particular, waves of the same wave
length propagate at higher frequencies. The most frequently used remedies 
to attenuate this discrepancy are: 

• To introduce correction factors in the constitutive equations. 
This was done by Mindlin in [7] and [8], where two and, respectively, three 
factors were used to correct the cutoff frequencies of the thickness-stretch 
and thickness-shear modes. The number of correction terms grows with the 
order in the thickness coordinate of a plate theory (see, e.g. [15]); in [4], two 
factors are used to adjust the behaviour of the flexure dispersion branch. 

• To use a more descriptive kinematics. 

Typically, this is done by a representation based on high-order polynomials 
in the thickness variable. For the elastostatic problem, it has been shown [1] 
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that a two-dimensional polynomial solution converges in the energy norm to 
the three-dimensional solution when the number of terms increases. In [14], 
a comparison of the frequency spectra from elastic plate theories of different 
orders shows that a third-order theory is more accurate than the first-order 
one with correction factors. 

• To use suitable special functions, not powers, of the thickness coordinate 
in the representations of the fields of interest. 

In [3,6],the dependence of the in-plane displacement on the thickness coordi
nate is assumed to be the sum of a cosine series and a linear term; this allows 
for fairly accurate predictions of the cutoff frequencies. In [10], the depen
dence on the thickness coordinate is accounted for by means of the complete 
set of functions appearing in the exact solution of the three-dimensional plate 
problem at cutoff. 

In our present study we adopt the second of the above remedies, and 
compare the results that can be achieved by the first-order representation for 
the displacement and the electric potential stipulated in [9] and [11] with the 
corresponding results when a third-order representation is used. 

We employ the linear theory of electroelastic plates developed in [9], where 
the plate's material is assumed to be transversely isotropic and coherently 
oriented. Within that theory, two uncoupled evolution problems govern the 
"membrane" and "flexure" regimes. "Membrane" waves have been studied 
in [11]; we here focus on "flexure" waves, as described within both a first
and a third-order kinematics. The first-order theory is dealt with in Sections 
2 and 3; precisely, in Section 2 we list the general equations for flexure vi
brations and, in Section 3, we determine the conditions for propagation of 
flexure waves. The enriched, third-order theory is briefly considered in Sec
tion 4, where we restrict attention to free-wave propagation; in particular, we 
compute and plot the dispersion curves for a representative electroelastic ce
ramic, the lead titanate-zirconate Pl-88. Finally, in Section 5, we compare the 
dispersion branches of our first- and third-order plate theories - two branches 
in the case of the first-order theory, four in the other case - with the first 
four dispersion branches given by the three-dimensional theory. As expected, 
increasing the order of the plate theory yields a better match between the 
first two branches, while the cutoff frequencies are modestly affected; both 
the third and the fourth cutoff frequencies and branch shapes differ much 
more from the corresponding three-dimensional modes. 

2 Free flexure vibrations of electroelastic plates 

Let the region fl be plate-like, i.e., let fl be a right cylinder of axis z and 
typical point p = x+(z, with (x, () E P x ( -c:, +c:), and with the cross section 
P a flat domain with smooth boundary oP. For { o; c1 , c2 , z} an orthonormal 
frame, the position vector of x E P with respect to the frame origin o is XaCa 
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(a= 1, 2), while the transverse fiber through X is the set of points p E f? such 
that p- x = ( z, ( E ( -E, +c-). Assume that: (i) the material is homogeneous 
and has transversely isotropic response with respect to the axis z [ vid. [9]]; 
(ii) the displacement and potential fields have the representations 

u(x, (, t) =a(x, t) + w(x, t)z + ( (b(x, t) + u(x, t)z), a· z= b · z=O, (1) 

¢(x, (, t)=¢0 (x, t) + (¢1 (x, t), (2) 

It is convenient to split the representations (1) and (2) into their "membrane" 
and "flexure" parts, namely, 

urn(x, (, t) = a(x, t) + ( u(x, t) z, 
u1(x, (, t) = w(x, t) z + ( b(x, t), 

cPm(x,(,t) = (¢1(x,t), 
¢J(x, (, t) = ¢o(x, t), (3) 

where a· z = b · z = 0. The membrane displacement Urn is mirror symmetric 
with respect to the middle plane P while the flexure displacement u 1 is mirror 
antisymmetric. 

If we neglect noninertial body loads and body electric charges over Q x iR 
and furthermore, if we assume null contact loads and surface charges over 
8f? X i'J? (we are interested in free vibration), then the virtual work principle 
states that 

(4) 

for all test fields ( v, '1/J). Here S is the Cauchy stress, d the electric displace
ment and e > 0 is the mass density. 

Under the assumptions (i) and (ii), the membrane and flexure descriptors 
(urn, ¢rn) and (uj, ¢J) turn out to be energetically orthogonal [9]; hence, 
the dynamical behavior of a linearly, electroelastic plate is described by two 
independent systems of equations which are deduced by ( 4) after integration 
over the plate thickness (see [9] and [2]). The two-dimensional flexure problem 
follows: 

17Div (\?w +b)+ <hLl¢o = pw, 
1 2 1 2 •• 

3c- (JLLlb+(-\+JL)V(Div b))-ry(\7w+b)-o1\7¢0 ='3c pb, (5) 

01Div (\?w +b)- f'1Ll¢o = 0. 

where 

,\ + 2JL = ICnn, ,\ = IC1122, 71 = IC3333, 72 = IC1133, 73 = IC2323; 

/'1 = Cn, /'2 = C33; 01 = IC131, 02 = IC311, 03 = IC333. (6) 

We are going to study solutions of system (5) having the form of plane 
progressive waves. 
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3 Flexure waves 

We decompose b(x, t) into its irrotational and solenoidal parts as follows: 

b(x, t) = \lb(x, t) + Z\lb(x, t), (7) 

where Z is such that Zv = z x v for all v E V, and b(x, t) and b(x, t) are 
scalar fields. 

Applying the Div and Curl operators to equation (5)2, and using the de
composition (7), system (5) splits into the following bending and twist prob
lems: 

7J i1 (w +b)+ J1i1¢o- pw = 0, 
1 1 2 .. 

3s 2 (A+ 2J.L) f1f1b- pw- 3E piJ.b = 0, (8) 

J1i1 (w +b) -')'Ii1¢o = 0, 

in the unknowns w, b, ¢0 and 

which determines b. 

We look for solutions (w, b, ¢ 0 ) of (8) having the form 

(w,b,¢0 ) = (W,B,<Po)g(x,t), (9) 

where W, B, and <P0 , are complex amplitudes and the wave shape is 

g (x, t) = exp (2Jri (k · (x- o)- ft)), (10) 

with k = kv, where k is a complex number, f is a positive, real number and 
v is a unit vector such that v · z = 0. We call these motions flexure waves. 

Inserting (9)-(10) into (8) we obtain an equation of the form 

N(K,F)d=O, (11) 

where the vector d stands for the triplet (W, B, <P0 ), and N(K, F) is a 3 
by 3 matrix whose entries are functions of the dimensionless real quantities 
K = LE 2 k2 and F = TE 2 P, with LE = 2JrE and Tf: = 2JrE v'PJP, the length 
and time scale we select for the problem. Equation (11) admits nontrivial 
solutions when 

det N ( K, F) = 0 . (12) 

For each fixed positive value of F, the dispersion relation (12) admits the 
following real roots: 

(13) 
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with r.p = (Ji+I'I7J), 'ljJ = ?.+2p, and d(F) = (r.p-')'1'l/J) 2 p,2F 2 +12r.p2 'lj;p,F > 0. 
The dispersion relation has two solution branches (while the original three
dimensional problem has infinitely many of them). 

Note that the in-plane component of the displacement field is parallel to 
v, and thus the related mechanical waves are longitudinal. The wave-number 
k is either real or imaginary according to whether K is positive or negative. 
The first case corresponds to a progressive wave (a motion with a net energy 
flux in the direction v), the second, to a localized standing wave. Accordingly, 
we call cutoff frequencies the values F± such that K± (F) = 0. 

It is worth pointing out some qualitative features of the solution for K = 0 
(i.e., at infinite wavelength): for F = 0, we have b · v = 0, w #- 0 and e = 0; 
for F = 3(ry + Ji/')'1)/p, we have b · v #- 0, w = 0 and e = -(81/')'I)b. Thus, 
the limit motion at F = 0 is an "up and down" rigid oscillation and there 
is no electric field, while the one at F = 3( 17 + Ji hi)/ JL is an in-plane shear 
oscillation of the" deck of cards" type and it is accompanied by a longitudinal 
electric field. In addition, both motions are isochoric. Inspired by these limit 
situations, we call the mechanical waves related to K+ (F) and K- (F) shear 
waves and in-plane shear waves, respectively. We remark that shear waves 
propagate at all frequencies, while in-plane shear waves are standing below 
the cut-off frequency fx = L-; 1 ..j(3r.p/pf'1 ), progressive for all frequencies 
above cut-off. 

4 Enriched electroelastic plate theory 

We have already remarked in the Introduction that structural theories ob
tained by imposing kinematical restrictions are "stiffer" than their parent 
three-dimensional theory, and hence lead to an overestimation of the vibra
tion frequencies. To improve the approximation achievable by means of a 
first-order theory we here allow for a wider set of motions. 

The plate-like body we consider continues to be homogeneous and trans
versely isotropic with respect to z. However, the representations we take for 
the displacement and the potential in the "flexure" problem are now as fol
lows: 

u 1(x, (, t) = w(x, (, t)z + b(x, (, t), b(x, (, t) · z = 0, 
¢>J(x, (, t) = ¢>0 (x, t) + ( 2¢z(x, t), 

with 

(14) 

b(x, (, t) = (b1 (x, t) + (3b 3 (x, t), w(x, (, t) = w0 (x, t) + (2 w2 (x, t) (15) 

(see [1] for a justification of (14)-(15)). 
Again, the virtual work equation (4) is used to deduce two uncoupled 

evolution problems. The Helmoltz decomposition of b1 and b3 splits the 
original problem into a system of four partial differential equations (bending 
problem) and a system of two partial differential equations (twist problem). 
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For the bending problem, we select harmonic-wave solutions and arrive to 
an algebraic system; the corresponding dispersion relations give four disper
sion curves. Figure 1 shows the dispersion curves computed for a plate in lead 
titanate-zirconate (Pl-88), for both the simple and the enriched kinematics 
(resp., dashed and solid lines). Note that the kinematic enrichment, beside 
adding two new dispersion branches, produces a welcomed frequency shift: 
for a given K, the third-order theory leads to a smaller value ofF, and thus 
to a smaller frequency f. 
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Fig. 1. Dispersion curves for bending waves: dashed line = 1st-order t heory; solid 
line = 3d-order t heory. 

The cutoff frequencies turn out to be: 

F1 = 0, 

F2,3 = (45{1 fJ + 1081 2 =f V1605,f ry2 + 480 {1 r]b1 2 + 100814 )/ (211 JL), 

F4 = 15 (J32 + 71 /2)/(JL /2), 

At cutoff (K = 0) we have: 

• For F = F1 , b · v = 0, w = w0 f. 0, e · v = e · z = 0. The motion is an 
"up and down" rigid oscillation. 

• For F = F2 ,3 , b · v = ((b 1 + (3 b3 ) · v f. 0, w = 0, e · v f. 0. We call the 
motion an in-plane shear oscillation of the "deck-of-cards" type. 

• For F = F4 , b·v = 0, w = w0 +(2w2 f. 0, e·v = 0, e·z = 2(¢ 0 f. 0. The 
motion is an "up and down" voluminal oscillation; the volume change is 
given by the quadratic term. 

We remark that the in-plane shear motions are associated to longitudinal 
electric fields, while a transverse electric field is associated to "up and down" 
voluminal oscillation. 
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5 Comparison with the three-dimensional theory 

In this section we compare the dispersion curves predicted by our two "flex
ure" plate theories with those given by a three-dimensional linear electroelas
tic theory. We follow the path suggested by Tiersten [13] to deduce the dis
persion relations for the same transversely isotropic electroelastic plate (see 
also [12] and [5]). We begin with the mechanical and electrical field equations 

Div (CV'u + ICtV'rp) = eii, Div (ICV'u- CV'rp) = 0, (16) 

with Neumann boundary conditions on the bases ( = ±c: 

(CV'u + ICtV'rp)n = 0, (ICV'u- CV'rp) · n = 0. (17) 

We consider solutions (u(x, (, t), ¢(x, (, t)) of (16) and (17) having the form: 

u=(w(()z+v(()c1 (())g(x,t), <P=<P(()g(x,t), c1 ·z=O, (18) 

where g (x, t) is given in (10) and the propagation direction v coincides with 
c1 . Since the chosen displacement lies in the plane formed by c1 and z and it 
is independent from the x 2 coordinate, it defines a planar displacement wave. 
When the representation (18) is substituted into the field equations (16) it 
turns out that solutions must have the form: 

w( () = 2.:::;= 1 (A{ cos(p;() + Ai sin(p;()) W;, 
v( () = 2.:::;= 1 (A{ sin(p;() + Ai cos(p;()) v;, 
¢(() = 2.:::;=1 (A{ cos(p;() +Ajsin(p;()) tP;, 

(19) 

where (p;, (W;, v;, tP;)T; i = 1, ... , 3) are the solutions of a suitable eigenvalue 
problem derived from (16). The coefficients A{ and Ai are obtained by 
imposing the boundary conditions (17). Nontrivial solutions for A{ or Ai 
exist, provided the frequency f and the wave number k satisfy a dispersion 
equation. In Fig. 2 we plot the first four flexure dispersion curves (dash
dot line) for a lead titanate-zirconate P1-88 plate. We compare them with 
the ones from the first- and third-order plate theories (dashed and solid line 
respectively). 

As the order increases, a plate theory would seem to lead to a better and 
better matching of more and more three-dimensional dispersion curves. In 
our case, the third-order theory brings in two new approximate dispersion 
curves and improves the description of the first two modes; the new branches 
are however quite different from the corresponding three-dimensional modes, 
both by cutoff frequency and by shape. 
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Abstract. This paper deals with the formulation of a one-dimensional mechanical 
model for studying the statical behaviour of a RC beam strengthened with Fibre
Reinforced Polymers (FRP) plates. Some numerical results obtained via finite ele
ment method (FEM) are also given and show the efficiency of the proposed model 
in evaluating the stresses distributions at the interface between the concrete core 
and the composite laminate. 

1 Introduction 

In the last few years the use of Fiber Reinforced Polymers (FRP) to strengthen 
reinforced concrete beams is becoming more and more frequent in the field of 
Civil Engineering. Nowadays, all the drawbacks related to Hermite's tradi
tional technique, which uses steel plates externally bonded to concrete struc
tures, can be easily overcome by applying composite laminates at the tension 
side of beams. They are characterized by high strength-to-weight ratio, low 
maintenance cost and corrosion resistance. 

A static problem of relevant technical interest is represented by the trans
mission of shear and normal stresses at the plate-core interface. In fact, these 
stresses can produce the brittle failure of the strengthened beam because of 
a sudden and premature de bonding of the composite laminate or cracking of 
the concrete cover along the level of internal steel reinforcements. 
The problem has been studied by many authors both from a theoretical and 
from a numerical and an experimental point of view. Relevant features of this 
problem are: the shear and normal stresses concentrations at the ends of the 
composite overlay (cut-off cross-sections) [1-4]; the non-uniform distributions 
of such stresses along the reinforced boundaries [5-7]. 
This work presents a one-dimensional mechanical model of such strengthened 
beam able to analyze all the above mentioned aspects under general hypothe
ses of loading. The paper also presents some theoretical predictions of the 
interlaminar stresses distributions along the beam axis and the strengthened 
boundaries. 

The authors are going to compare them with the experimental results 
they are carrying out at the Testing Laboratory of the Department of Civil 
Engineering of the University of Salerno. 
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2 Kinematical assumptions 

Consider a straight reinforced concrete beam strengthened with an exter
nal FRP laminate. It is useful to schematize the natural configuration B of 
the strengthened beam as an assembly of two one-dimensional components 
corresponding to the concrete core B(I) and to the composite overlay B(2), 

respectively (Fig.l). 
Further let { 0, x, y, z} be a right-handed orthonormal reference frame 

and assume that the origin 0 belongs to one of the beam bases. The unit 
vectors of x, y and z axes will be denoted by i, j and k respectively and the 
displacement components of a generic point P of the strengthened beam by 
u, v and w. 
It is useful to introduce a local reference frame relative to a generic point 
of the laminate cross-section middle line p (Fig.l). Let {n, t, k} be the unit 
vectors of the local reference axes: n and t are respectively normal and tangent 
to the middle line p. The vector basis {n, t, k} is supposed to be right-handed 
as the basis {i, j, k} . 

B 

X M 

X I 
I 
I 

C •-------- Yc 

y 

Composi1e overlay 

Fig. 1. Natural configuration of aRC beam strengthened with a composite overlay. 

2.1 Kinematical model of the concrete core (B(ll) 

The kinematical model of the concrete core B(l) is driven from a suitable 
power expansion of the displacement field components with respect to the 
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coordinates x and y starting from a suitable point P0 (x0 , y0 ) of its cross
section E( 1) [5]. 

That is: 

uUl(x, y, z) = 

= u61)(z) - eUl(z)(y- Yo)+ L ug\z)(x- xo)i(y- Yo)j , (la) 
i,j 

v(1l(x,y,z) = 

= v61)(z) - eUl(z)(x- xo) + L v~~(z)(x- xo)m(y- Yo)n , (lb) 
m,n 

wUl(x,y,z) = 

= w61l(z)- qPl(z)(y- y0 )- '!f/Il(z)(x- xo) + 
+ L w&\z)(x- xo)h(y- Yo)k , (lc) 

h,k 

where: u61l, v61) and w61) are the displacement components of P0 ; cpUl(z), 
'IJ'I(ll(z) and e(ll(z) are the rotation vector components of E(l), and the quan-

tities ug), v~~ and w~~ are terms of higher order in the power expansion. 

The terms in uUl and v(l) , related to ug) and v~~ , model an in-plane 

deformation of the cross-section E(l) ; the terms in w(ll , related to w~~ , 
model, instead, an out-of-plane warping of E(l) . 

2.2 Kinematical model of the FRP laminate (B<2 >) 

The kinematics of the FRP laminate B(2) is based upon the following as
sumptions: classically, a generic cross-section E(2) exhibits a rigid rotation 
about a suitable point C (xc, Yc ) of its own plane (Fig.l) and a super
imposed out-of-plane warping [8]. Shearing deformations "Ytz of the middle 
surface are also allowed: they are related to the weak shear stiffness opposed 
by the composite overlay because of the low values exhibited by the elastic 
tangential modulus of the plastic matrix. 

Consequently, the following displacement field is assumed: 

u(2l(x,y,z) = ug)(z)- B(2l(z)(y- Yc), 

v( 2l(x,y,z) = vg\z)- e(2l(z)(x- xc), 

w(2l(s, z) = wg\z)- ,B(2l(z)x(s) + o:(2l(z)y(s) + 
-B(2l(z)w(2l(s) + L "(~2l(z)w~2>(s) , 

p 

(2a) 

(2b) 

(2c) 
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where: u~)(z), v6)(z) and w~)(z) are the displacement components of C; 
oJ 2) ( z) and ,6( 2) ( z) are the cross-section flexural rotations; iJ( 2) is the deriva
tive of the twisting rotation B(2 ) with respect to the z coordinate and w( 2) is 

the sectorial area of the classical Vlasov's theory [9]; "Y~2 )(z) are further gen

eralized displacement components and w~2 ) are geometrical quantities defined 
as: 

Q 

w~2 ) = J J;(s)ds , (3) 

M 

J;(s) being suitable shape functions of the curvilinear coordinates. In Eq. (3) 
M is the origin of the curvilinear coordinate s and Q is a generic point of p. 
The term iJ(2 ) (z)w( 2) (s) corresponds to a warping of the cross-section without 

shear deformations of the middle surface, while the term 1'~2 ) ( z )w~2 ) ( s) cor
responds to a warping of the cross-section in presence of shear deformations 
of the middle surface, depending on s and z. The above kinematical model 
coincides with Vlasov's one if functions "Y~~) = u~) - ,6(2), "Y~~) = v6) + a<2l 

and 1'~2 ) are equal to zero. It is interesting to remark that "Y~~) and "Y~~) cor
respond to sliding deformation modes of a generic beam element of length dz 
in the plane ( x, z) and (y, z) respectively. The further terms 1'~2 ) allows us 
to simulate a more realistic behaviour of the FRP overlay with regard to the 
effects of shear deformability. 

2.3 Interface 

The mechanical model here presented assumes that the composite overlay 
B(2 ) is bonded to the concrete core B(l) by continuous distributions of bi
lateral elastic springs, arranged along the three axes of the cartesian refer
ence system. The spring reactions give an approximation of the interlaminar 
stresses. 

A relevant problem in studying composite plating is the concentration 
of shear stresses and peeling forces near the anchorage zone (cut-off cross
sections) [1,2,4]. It depends on the actual diffusion of such interactions from 
the concrete core to the strengthened beam, which is a tridimensional phe
nomenon. 

Nevertheless, within a one-dimensional model, the transmission of the in
terface bond-stresses can be simulated [4] by assuming that the FRP plates 
present a "virtual" increment of thickness from 0 to the actual value tP over 
a suitable length ld which can be related to the characteristic length ex
hibited by an elastic beam axially loaded and constrained by a continuous 
distribution of elastic springs along its own axis: 

(4) 



www.manaraa.com

On the Plating of Reinforced Concrete Beams with Composite Laminates 281 

In Eq.(4) Ep denote the plate Young's longitudinal modulus, G9 is the shear 
modulus of the adhesive, tp and t 9 are the thicknesses of the plate and of 
the adhesive respectively, and x is an appropriate real number. This kind 
of modeling has been already used by the authors in [4] and provides good 
agreement with the experimental results presented by Swamy in [1]. 

3 Numerical results and conclusions 

In this section we present some numerical results concerning a rectangular 
RC beam strengthened both in flexural and in shear with externally bonded 
Carbon FRP plates. The beam is simply supported and subjected to two 
concentrates forces (F), symmetrically placed from the mid-span, as shown 
in Fig.2. 

RC beam F ~ Carbon FRP plates 

~r ~I 
208 st ¢6/150 

1900 

0 110 

700 600 700 

0 2 10 
2000 

2300 

As 

Fig. 2. Geometry and loading configuration of aRC beam strengthened with carbon 
FRP plates (Dimensions in mm- not to scale). 

The numerical analysis has been performed by using the finite element 
model presented earlier by the authors in [8]. The materials constituting the 
FRP plates have been supposed to be linearly elastic and orthotropic. Within 
the finite element programme developed by the authors, the behaviours of 
the concrete core and of the internal steel rebars have been modeled both as 
linearly elastic or elasto-plastic. The possibility of a different behaviour of the 
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concrete in tension and in compression has been also taken into account. The 
materials elastic properties used in the numerical analysis are summarized in 
Table 1. The finite element model uses Hermitian cubic interpolation shape 
functions to approximate all the kinematical unknowns. The corresponding 
discrete problem, which is non-linear because of the constitutive hypotheses, 
has been solved by the Newton-Raphson method. 

Table 1. Material properties (Fig.1) 

Concrete Ec= 28460 N/mm2 Gc = 14230 N/mm2 Vc= 0 
Steel Es= 210000 N/mm2 Gs = 105000 N/mm2 Vs= 0 

Et= 215480 N/mm2 Gtn = 42430 N/mm2 l/nt= 0.016 
FRP Plates En= 86250 N/mm2 Gtk = 86190 N/mm2 l/kt= 0.25 

Ek= 215480 N/mm2 Gnk = 42430 N/mm2 Vkn= 0.016 
Adhesive Eg= 400 N/mm2 Gg = 160 N/mm2 l/g= 0.25 

Fig. 3 shows the distributions of shear and normal stresses along the cross
section boundary at a distance from the supports of 56mm. They are relative 
to a value of the diffusion length ld equal to 25 mm (x = 1) and to a value 
of the load equal to Fu=2F=76.8 kN (Fu =theoretical ultimate load). As 
it can be seen the interface bond-stresses Tnz are non-uniformly distributed 
along the reinforced boundaries and present peak values in the bottom plate. 
Fig. 4 shows the comparisons between the distributions of the interlaminar 
shear stresses Tnz along the z-axis relative to three values of the diffusion 
length ld : 25, 50 and 100 mm (x=1, 2 and 4, respectively). As it can be seen 
shear interactions exhibit local maxima near the cut-off and reduce to zero 
in this section. Furthermore, such interactions rise as we get to the point of 
application of each concentrated force F. 

The non uniform distributions of the interlaminar shear stresses T nz sug
gest us to introduce a coefficient a , defined as the ratio between the maxi
mum value of the shear stresses Tnz and the average one Tav 9 (a = Tmax/favg) 

calculated by the Jourawsky's formula. This coefficient could be relevant for 
technical purposes. 

It is interesting to express the coefficient a (interlaminar shear stress 
multiplier) as product of two further coefficients: 

(5) 

where: 
- a 1 is a partial interlaminar shear stress multiplier due to the shear and 

normal stresses concentrations at the ends of the composite overlay (cut-off 
cross-sections), 

- a 2 is a partial interlaminar shear stress multiplier due to the non-uniform 
distributions of such stresses along the reinforced boundaries. 
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Table 2 summarizes the values of the above coefficients corresponding to 
the three different diffusion lengths !d. As it can be seen the coefficient o: 
increases as the diffusion length ld decreases, while the coefficient o:2 does 
not depend, instead, on !d. 

Table 2. Values of the interlaminar shear stress multipliers 

25 
50 

100 

2.140 
1.819 
1.628 

1.779 
1.786 
1.803 

3.807 
3.249 
2.935 

In order to obtain an accurate prediction of the coefficient x in Eq. ( 4) 
the authors are engaged at the moment in some experimental investigations 
at the Testing Laboratory of the Department of Civil Engineering of the 
University of Salerno. 
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Abstract. In this paper, the non linear tensile behaviour of fibre reinforced con
crete is analyzed. In order to determine the possible failure micromechanisms and 
the tensile strength of the material, a non linear analysis is developed. Specifically, 
the possible slippage between fibre and matrix and the different concrete behav
iour, under tensile and compressive load, are considered. Finally, by using the finite 
element method, numerical results are obtained for several fibre volume fractions 
and comparisons with analytical results are carried out. 

1 Introduction 

The possible applications of concrete reinforced by short fibres and the study 
of its mechanical behavior is an important issue in the field of the Civil En
gineering. The most difficult problem is to obtain the constitutive equations 
of the concrete reinforced with fibres in the linear and nonlinear phase. This 
material can be considered as a composite made by a matrix of concrete with 
a brittle behavior and by steel short fibres randomly distributed in the matrix 
with a volume fraction between 1% and 2%. The aim of such a reinforcement 
is to improve the mechanical behavior of the material when tensile forces are 
acting. Infact, a limit tensile strength with ductile behavior is ensured to the 
material. The tensile uniaxial behavior of the composite is usually schema
tized by the constitutive relationship represented in figure 1. This behavior 
has been observed in many experiments [1]. 
If the material is loaded by an uniaxial strain, it is possible to observe the 
following characteristic phases of the behavior of the material: 

a) Initial linear elastic phase. It is characterized by an elastic modulus 
and by the peak strength of the concrete a mt. 

b) When the limit strain Ec of the matrix is attained, the composite 
changes configuration for values of the strain greater than the limit one. Fur
thermore, cracks develop in the matrix and the resulting stress is sustained 
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by the composite material made of the cracked concrete and the fibres. 

c) The value of the stress IJr at damaged conditions, represents the 
minimum value of stress for strains greater than Ec· As a matter of fact, in
creasing the applied strain, several damage phenomena can occur: slipping 
between fibre and matrix or plastic compressive strains in the matrix. The 
failure condition due to one of the two previous damage phenomena is at
tained for values of the strain quite greater than Ec but with ultimate stress 
close to !Jr. This experimental observation justifies the use of the constitutive 
behavior shown schematically in figure 1 [ 1]. 
For this reason, the value of the stress IJn represents the maximum stress 
corresponding to a sufficiently ductile material behavior. Because of such a 
ductile behavior the performance of structural elements in f.r.c. improves 
considerably. 
As matter of fact, though the residual stress IJr , is less than the traction 
strength of the matrix, in the case of structures, for example reinforced con
crete beams, the presence of the fibers can increase the bending strength of 
the structural element. It is worth noting that the limit bending moment 
of the beam grows by increasing the fiber volume fraction and, in several 
cases, it can became greater than the limit bending moment of beams with 
unreinforced concrete. 

In summary, the use of fibre reinforcement increases the strength and the 
ductility of concrete structures and, in order to model such a behavior, it is 
very important to evaluate the residual stress !Jr. 

Aim of this work is the evaluation of IJr by using micromechanics [2-9]. 
Initially this task is reached by modelling the concrete as a no tension material 
[10] and the fiber as linear elastic. The no-tension material is characterized 
by elastic strain in the compressive stress directions and by cracks in the 
quasi-zero stress directions. Then, the global strength of material reinforced 
by elastic fibres can be obtained by using homogenization methods and the 
strain and complementary energy principles, i.e. by using techniques similar 
to the ones used in [3-6]. Further, by assuming for the matrix a limit value for 
the compressive stress and a rigid plastic behavior at the interface between 
fibres and matrix, it is possible to evaluate the limit strength of the composite 
by using the formulations of limit analysis for no tension materials [10]. 

In the case of periodic arrangement of the fibres, the analysis can be devel
oped by using the finite element method [9]. In this work a two-dimensional 
(2-D) model characterized by rectangular fibres is presented. 

2 Constitutive law of the constituents 

Matrix: An elastoplastic constitutive model characterized by a very low 
tensile strength and a finite compressive strength schematises the behaviour 
of the concrete. Specifically, for general stress states, a Rankine-type failure 
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cr 

crmt 

Fig. 1. Experimental behaviour of fiber reinforced concrete. 

surface has been considered. 
The material experiences the failure when the principal stresses reach the 
tensile or compressive yield value. In this way, the different behaviour of the 
concrete in tensile or compressive stress can be modelled. 
The elastic domain of the concrete is represented by a cube in the space of 
the principal stresses (u1,u2,u3), moved with respect to the origin. In the 
case considered here, the stress state is 2D, then the stress u 3 is zero, and, if 
the elastic domain is expressed in the plane of the principal stresses u 1 and 
u 2 , the following relations can represent it: 

h = 0'1 - O't = 0; h = 0'2 - O't = 0; h = - 0'1 + O'c = 0; / 4 = - 0'2 + O'c = 0 
(2) 

where u t and u c are the tensile and compressive limit strength, respectively. 
Further, in the computations equation (2) has been replaced by a continuous 
and differentiable surface. 
Specifically, the failure surface has the following expression in the plane of 
the principal stresses: 

(3) 

with a, w > 0 and p a non-negative even integer (see figure 2). 
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Fig. 2. Limit surface. 

The parameter p determinates the shape of the limit surface so that it 
represents a circle with centre the origin and radius a when p = 2. Increasing 
p, the shape of the surface tends to become a square with side 2a. 

The parameter p, allows approximating the rectangular domain of Rank
ine. The other parameters are: 

ur+uc 
W= -----

2 

ur - uc 
a= 

2 
(4) 

which represent the abscissa and the ordinate of the centre and the radius of 
the circle obtained for p=2 , respectively. 

In the following p is chosen equal to 6. 
Fibre: The steel fibres are considered linear elastic. Such a hypothesis is 
consistent with the model since the stress in the fibres does not reach the 
yield limit. 
Fibre-matrix contact: The behaviour of the possible slip between concrete 
and steel is assumed elastoplastic with limit slip-stress T 0 • 

3 Geometrical model 

The model considered in this paper is a concrete reinforced by short fibres 
parallel to the applied load. The fibres have a unique geometry and they are 
spread periodically in the matrix. 
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------

d 

w r 

Fig. 3. Geometrical and load scheme of the unit cell. 

Therefore their length, the distance and the overlapping between two of 
them define the pattern of the fibres. 

The periodicity assumption allows to consider the behaviour of the unit 
cell instead of considering the entire composite. 
Further, it is assumed that the model is plane with thickness t and the matrix 
is reinforced by rectangular fibres. 
In figure 3, the unit cell considered in the analysis is shown. It is composed 
by two steel fibres with sizes 2r and 21 in a concrete matrix. The distance 
between two fibres is d and their overlapping is s. 
The unit cell is constrained vertically along the horizontal sides and horizon
tally along the vertical sides. Further, along one vertical side, a displacement 
6 in the direction of the fibres is enforced. 
In the analysis, the behaviour of the unit cell is studied until failure of the 
model for several volume fractions of the fibres (2% to 14%) and by taking 
fixed some geometrical parameters (l and s). 



www.manaraa.com

290 A. Grimaldi, R. Luciano 

4 Homogenization 

Since the periodicity and the geometrical and load symmetry of the compos
ite, the unit cell represented in figure 3 has been considered in the homogeni
sation procedure. 

The average strain has been given by imposing the displacement b, while 
the overall stress aij is the average, in the unit cell, of the corresponding local 
stress. Let h and L be the height h( = d) and the length L( = l + s) of the 
unit cell, respectively, hence the volume of the unit cell is L · t · h = V. 
The expression of aij is: 

~ 1/ O"ij = V O"ij dV (5) 

v 

that, for the equilibrium and the Gauss theorem, can be rewritten as 

Vaij = j ( O"ikx j) ,k dV = j O"ik x jnkdS (6) 

v av 

where nk are the components of the outwards normal of the unit cell and Xj 

are the coordinates in the assumed reference framework. The main component 
of the average stress is &11 , which can be evaluated by using (6) as: 

Van = L · t · j un n1dxz 

h 

(7) 

Further, by denoting u11 n 1 = s 1 , the total reaction on the face of normal 1 
is R 1 = t · J s 1 dx 2 . Therefore, we obtain &11 as 

h 

an=RI/(t·h) (8) 

In summary, the overall material response can be evaluated by computing 
the total reactions on the sides of the unit cell at each load step by solving 
the corresponding elasto-plastic problem. 
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5 A finite element analysis 

In this section, the homogenisation problem will be approached via finite 
elements. 
The unit cell has been discretised by a mesh of four node isoparametric 
elements. 
Further, since the non-linearity of the problem, an iterative procedure has 
been implemented for solving the problem at each load step. Specifically, the 
Return Mapping scheme [11] has been adopted, by using the failure surface 
presented in the previous section. 

The contact element between the steel and the concrete has been realised 
by two springs directed in two orthogonal directions. The computation of 
the plastic slip at each load step is developed by Return Mapping for one
dimensional elements [11]. The numerical algorithms have been implemented 
in FORTRAN and the Finite Element Code FEAP has been adopted (see 
[12]). 

6 Limit analysis 

The results obtained by the finite elements formulation can be compared 
with the ones provided by the limit analysis developed in [8]. At this aim, 
the expressions of the main theoretical results are presented in the following 
[8, 9]. 
Specifically, only two failure mechanisms have been considered. 
The first one is the slip mechanism characterised by plastic compressive defor
mations in the central zone. By using such a micromechanism, the following 
upper bound on the failure load of the unit cell is obtained: 

(9) 

On the other hand, by considering a micromechanism characterised by 
slippage between fibres and matrix, the upper bound becomes 

(10) 

Where To is the yield strength at the interface. The value of To is usually 
less than a c/2 and, therefore, the second expression provides the upper bound 
for the limit average stress of the homogenised material. 
The static theorem of limit analysis provides the lower bound on the strength 
of the model which can be expressed as: 
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To s sin({3) 

d sin(iJ) 
( 1 _ tan(f312)) 

tan ({3) 
(11) 

where tan (j!) = s I d while sin (jj) = 2Tol u c . Such a situation is valid only 
when {3 < {3 whi5.:_h represents the failure of the concrete. 
In the case {3 > {3 , i.e. failure for slippage of the fibres, the following relation 
holds: 

To s 
d 

( 1 _ tan (iJ12)) 
tan ({3) 

(12) 

From the previous equation it can be remarked that a;-; depends on the 
ratio between the overlapping fibre-matrix and the distance between two 
fibres. 

7 Numerical applications 

In this sections several numerical applications and comparisons will be pre
sented. 
The mechanical parameters of the constituents of the model are reported in 
tab. 1, where the force is measured in kg and the length in centimetres. The 
strength of the concrete used in the computations is u c = 300kg I em 2 . 

The limit tensile strength of the concrete has been chosen as small as possible 
in relation to the numerical model adopted. 

These assumptions are equivalent to study the model of fibre-reinforced 
concrete by considering the matrix unable to support tensile stresses. 
The stiffness of the contact element (spring) is assumed of the same order of 
magnitude than the one of the concrete. 
Several comparisons and models have been studied. 
On the other hand, several values of the strength T 0 have been considered. 
In order to limit the number of the cases to study, the length and the thickness 
of the model and the overlapping between the fibres have been taken fixed: 
1=2, r=.1 and s=l. 
The distance between the fibres is the only varying parameter. 
Several volume fractions of the fibres have been considered in the applications, 
hence several values of {3 have been examined. 
Further, two different values of To (To= 30kglcm2, To= 120kglcm2 ) have 
been considered in order to examine the failure of the model due to the 
compression of the matrix or the slippage of the fibres. 
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Materials Elastic Modulus [Kg j cmk v ITtfK_q / cmk] O"v[K_q / cmk To[K_q jcmk] 
Stell 2.100.000 0.3 00 00 I 

I Concrete 2.100.000 0.1 8div 14 300 I 
;rmt.art :~nr nor _00 00 :illfl!V ~~ 

Table 1 

~ It is worth noting that, for To=30, f3 is equal to 11.50°, while for To=120, 
f3 is equal to 53.13°. 

In figure 4 the relation &n (average stress in the direction 1) - en is 
presented for jj = 11.50° and jj =53.13° while a volume fraction of fibre 
equal to 11 (i.e. for f3 = 45° has been considered. 
The behaviour of the material obtained via FEM does not reflect completely 
the experimental behaviour in figure 1, because the analysis has been limited 
to the phase b (cracked medium) and the phase c (failure) of the model. 
In figure 4, three points of the stress state of the overall composite have been 
reported (A, B, and C). They respectively detect: 
(A) the elastic state 
(B) the cracked state 
(C) the failure. 
In order to determine if the failure is reached for compression or for slippage, 
the contact tractions between concrete and steel have been obtained. 

60 
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30 

20 

10 

0~----~----~----~----~------~----~----~ 
O,OOE+OO 2,00E-04 4.00E-04 6,00E-04 8,00E-04 1,00E.03 1,20E-o3 1,40E.03 

Fig. 4. Homogenised relation : (an - c: 11 )for /3= 11 .50° (case 1) and /3=53.13° 
(case 2). 
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Since the two cases considered ( jj = 11.50° and jj =53.13) present the 
same geometrical scheme and have different limit slippage between fibre and 
matrix (the values of CJt and CJc are the same for both models), the behaviour 
of the two models coincide until the limit tangential stresses, at the interface, 
are reached. Then the behaviour follows two different paths. 
In the first case (jj = 11.50°) the stresses can increase until the compression 
failure of the matrix is reached. 
In the second case, the stresses cannot increase since the slippage mechanism 
is already activated. 
In summary, the following conclusions can be stated: 
Point A 
The stress pattern in the two cases is the same. In this phase, the concrete 
supports tensile stresses. Further, the distribution of tensile stresses localises 
at the end of the fibre. 
Point B 
In both models, the limit tensile strength of the concrete is reached. In the 
whole matrix the principal tensile stresses CJ1 are maximum, while the com
pression stresses CJ2 increase slowly only in an inclined zone of the unit cell 
(compressed strut). 
Point C 
Case /3=53° 
The compression failure of the matrix is reached. The compressed strut de
velops along all the overlapping between two fibres. The principal stress is 
the compression limit one. 

50 

45 
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.! 

~ 25 

0 20 Numerical results 
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10 
-- Upper kinematic limit 
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~(%fibre) 

Fig. 5. Numerical comparison for .8= 11.50° 
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Case ,8=11° 
The stresses values are lower than the ones of the case ,8 = 53°. Further, the 
compression stress in the strut is lower than the compression strength o-c, 

while on the interface between fibres and matrix the shear stress reaches the 
limit value To. 

8 Comparisons 

The failure mean stress values of the model corresponding to the analytical 
and numerical results have been compared. 
In figures 5 and 6, the numerical FEM results, and, the lower and upper 
bounds, are given as functions of the parameter ,8. The corresponding values 
of the volume fraction are also given for three values of ,8. It is worth noting 
that the numerical results are bounded by the lower static and upper kine
matic limits, and that, for small values of jj , the limit analysis bounds are 
almost coincident. 
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Abstract. Aim of this paper is the evaluation of the steel properties influence on 
the behaviour of reinforced concrete structures, with particular reference to the 
ductility characteristics. A simplified beam model, subjected to bending moment 
and axial force, is developed and the relation between average strength and mean 
deformation is obtained. Furthermore the phenomenon of strain localization in the 
steel is pointed out. 

1 Introduction 

In these last years the problem of the influence of the steel properties on 
the global behaviour of r.c. structures has arisen a great interest both in the 
scientific and industrial fields. Recent studies and researches, reported in the 
quoted references, witness the need to state the minimum requirement on 
the ductility characteristics of the reinforcement bars. This aspect is strictly 
connected with the spreading in the whole Europe of new kinds of weld
able steels, made with the Tempcore process, characterised by high strengths 
(grade 500), but affected by a low ratio between the ultimate(! us) and yield 
(! ys) strengths (hardening ratio), and by a reduced ultimate strain (cu8 ). The 
use of these steels can increase the local strength, but can reduce the local 
and global ductility of the structure. 

This production has been accepted by the more recent European codes 
[EC2 1993, ECS 1994, ENV 10080 1995] in which a steel degree named B500B 
has been introduced, with yield strength equal to 500 N/mm2 . Nevertheless 
the same codes require the use of high ductility steels corresponding to a 
minimum hardening ratio of 1.2 and a minimum ultimate strain Eus = 9%, 
for structures in seismic zone. 

In this paper the steel properties influence on the ultimate behaviour 
of beam elements and simple framed structures is pointed out. The strength 



www.manaraa.com

298 A. Grimaldi, Z. Rinaldi 

and ductility characteristics of reinforced concrete members are evaluated in a 
simplified way, taking account of the cracking phenomenon and the materials 
behaviour. In particular the possibility of steel strain localization near the 
crack, at the rebar yielding is considered and highlighted. In order to evaluate 
the rotation capacity of r.c. beams many models, even much sophisticated, 
are available in literature and, for the great number of parameters involved in 
the problem, quite often a numerical solution is used. In this paper a model 
that allows to obtain an approximate, but simple evaluation of the mean 
curvature and of the plastic rotation of r.c. elements is proposed. 

2 Beam model behaviour 

The evaluation of the ductility capacity has been firstly developed with ref
erence to a beam element, with a length (l) equal to the crack distance, 
subjected to tensile load. A similar analysis has been performed for a beam 
model under bending and axial forces. The mean strain (axial strain or mean 
curvature) applied at the element is the loading parameter and the structural 
behaviour is analysed for subsequent steps, up to the failure. 

After the initial elastic behaviour (Fig. 3- Phase 1), cracking in the con
crete and slip occur with a stress and strain redistribution (Fig. 3 - Phase 
2). By increasing the applied strain, the steel yield is reached in the cracked 
middle section firstly, then the plastic deformations spread along the element 
(Fig 3 - Phase 3) up to the ultimate strain in the steel or in the concrete. 
Simple material constitutive relations are used in the analysis, as given in Fig. 
1 in order to clearly point out the parameters that influence the behaviour 
of the model. 

Cracked sec. 

Fig. 1. Beam model 
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Fig. 2. Constitutive relations of the materials 

The tensile behaviour of the element (Fig 1) is analysed by increasing 
the applied mean deformation cm=t5/ l, and by taking account of the slip 
between the concrete and the steel. This model has been already studied both 
theoretically and experimentally [Marti et a!. 1998]. At the first crack, in the 
middle section, the tensile strength in concrete vanishes and a slip between 
the two materials occurs. In this phase the model assumes a constant value of 
the bond stress along the bar, equal toT 0 (Fig. 2) . The equilibrium condition 
gives the linear stress distribution in the steel and in the concrete. 
After the stabilization of the crack formation, the bond strength and the 
crack distance are related to the tensile concrete ultimate strength (au ct in 
Fig. 2), that is reached in the edge section of the element. This condition 
corresponds to the hypothesis of maximum cracks spacing. As well known a 
minimum cracks distance can be evaluated according to the fracture energy 
criteria [Bazant et a!., 1983]. It is worth noting that in the model equation 
the product Tl appears as a parameter depending only on the ultimate tensile 
concrete strength. 
The model allows to highlight the localization of the steel deformation near 
the cracks, during the yielding phase. In fact, when in a cracked section 
the steel reaches the yield strength, a further load increment leads to an 
increase of the steel deformation as higher than the average one, as lower is 
the hardening ratio. Near the cracked zones localization of steel deformation 
can occur and then the ultimate strain and the failure of the bar can be 
quickly achieved. This phenomenon is particularly remarkable when t he steel 
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behaviour is quite an elastic-perfectly plastic one, i.e. when (fu s/fY 8 ) ;:::; 1. 
In this case when the yielding is achieved, the steel strain in the cracked zone 
rises instantaneously up to the ultimate one. The relation between the local 
strain increment in the cracked zone (Llc:s,l) and the average one (Llc:m), at 
the steel yielding (c:Y s) is [Rinaldi, 1998]: 

(1) 

The steel properties also affect the ultimate behaviour of the analysed 
r.c. element. The evaluation of the ultimate plastic strain, in fact, can be 
expressed by [Rinaldi, 1998]: 

u _ cP (ju jY) ( u f':) 
cm,p- 2Tl s - s Cs - Es (2) 

being 0 the bar diameter. The equation points out the influence of the 
steel characteristics on the plastic ultimate deformation and furthermore the 
localization phenomenon is confirmed. In particular, due to the lack of plas
ticization spread along the element, the plastic deformation vanishes when 
the steel behaviour is elastic perfectly plastic. 

A similar kind of analysis has been then applied to a beam member loaded 
by constant bending and axial actions. A beam element with rectangular 
cross-section and a length l equal to the cracks distance is considered, aim
ing at evaluating the stress and strain distributions and the local and mean 
curvatures. The classical hypothesis of plane sections is adopted only for the 
middle cracked section, where the tensile concrete stress vanishes; the as
sumption of perfect bond between steel and concrete is removed, and the slip 
between the two materials is taken into account. In all the cross-sections of 
the element the concrete strain pattern is assumed as a bilinear one, (Fig.1), 
as also proposed in [Gambarova et al., 1998], and as shown by experimental 
works, [Giuriani et al., 1979] and numerical analyses [Plauk et al., 1981, Ngo 
et al., 1967]. Also in this case the cracks are supposed to be diffused at con
stant spacing. The ultimate concrete strength has been assumed at the edge 
of the element. The constitutive relations for the materials are given in Fig. 
2. 
The formulation of a simple relationship between the bending moment and 
the mean curvature is achieved by following the behaviour phases related to 
an increase of the mean curvature up to the failure, defined as the reaching 
of the limit strain in the steel or in the concrete. At the concrete cracking a 
slip along the whole element occurs and according to the bond rigid-plastic 
behaviour the bond stress distribution is constant and the steel one is linear 
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from the middle to the edge section of the element. The neutral axis (xc) and 
concrete stress patterns, instead, are not linear with z along the element. The 
first step of the procedure is the solution of the equilibrium equations in the 
cracked section, where the tensile concrete stress is assumed to vanish. The 
parameter Tl can be derived in a simple way by the equilibrium condition of 
the rebar, at the first crack formation. The value of this parameter is assumed 
to be constant, during the load process. This hypothesis allows to solve the 
equilibrium equations of the edge section. The analysis is then repeated in 
all the intermediate sections and the stress and strain distributions in steel 
and concrete are obtained. After the yielding, the steel stress is always linear 
along the rebar, while the strain pattern is bilinear along the element accord
ing to the steel constitutive model. 
Of particular interest is the analysis of the intermediate section where the 
rebar strain is equal to the yield one. The distance ( m) between this sec
tion and the middle cracked one defines the length of the yielded steel, and 
is related to the deformation level and to the steel and concrete properties, 
according to the relation: 

m _ ¢ ( 1 Y) T - 4Tl Ey c s - c s (3) 

In this expression the parameter Tl/0 is related to the ultimate concrete 
tensile strength. The steel ultimate strain affects the plastic zone length only 
when the collapse occurs with concrete failure. On the contrary, the steel 
deformation in the cracked section E: 81 is equal to the ultimate steel strain 
Eus· 

The procedure can be summarised as follows: 
1) Analysis of the cracked middle section (Known: x c; act): evaluation of the 
strain distribution (a 8 ; x c) by solving equilibrium equations; 

2) Evaluation of the Tl/0 factor by equilibrium condition along the steel 
bar; 

3) Analysis of the edge cross section (known a 8 ; act =a act):- evaluation 
of the strain distribution (a c; X c) by solving equilibrium equations; 

4) Analysis of the yielded cross section (known CJ 8 = IJys; Xc):- evaluation 
of strain distribution (a c; act) by solving equilibrium equations. 

The local curvature is defined, according to the European Model Code 
90 [CEB-FIP, 1991] as the ratio between the sum of the deformation in the 
tensile steel and compressed concrete and the effective depth (d). The mean 
curvature has been evaluated assuming the curvature p{z) as a linear function 
from the middle cracked section to the intermediate yielded one and still 
linear to this section to the edge one. 

An example of the moment-mean curvature (Pm) relationship is plotted 
in the Fig. 4. The cross section geometry and the materials parameters are 
given in the Fig. 3; different values of steel hardening ratios but constant 



www.manaraa.com

302 A. Grimaldi, Z. Rinaldi 

ultimate steel stress ad strain are considered. 
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It is worth noting the relevant influence of the hardening ratio on the 
element behaviour; the reduction of this parameter from 1.2 to 1.05, leads 
to small increments of the bending moment, but produces a large ductility 
reduction. 
Finally, we observe that the mean curvature Pm can be evaluated with refer
ence to the steel strain according to the approximate relation: 

l / 2 J Es(z) 
Pm= d-xc(z)dz (4) 

0 

When the element failure corresponds to the ultimate strain in steel bar, 
then the mean ultimate curvature can be simply expressed as: 

u_ 1 {y(f': )[r/JEs(u Y)( Ey) ] Tl} Prn- d- X Es Jf - 1 4Tl Es - Es 1- Es + 1 + E~- r/JEs 

(5) 

where (x ) is a mean value of the neutral axis depth inside the element The 
difference between this simplified formulation and the more exact procedure 
is practically negligible. 
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3 Structural ductility evaluation 

The proposed formulation has been applied first to a single beam element 
under constant bending moment, then to simple models subjected to bending 
moment with linear distribution. Finally the frame models in Fig. 11 have 
been examined. The results concerning the beam element under constant 
bending moment, given in Fig. 5 and Fig. 6, are discussed. The hardening 
ratio (varying from 1.05 to 1.20), the tensile steel percentage f-l (from 0.13% 
to 1%) and the steel amount in compression, expressed as a percentage of the 
tensile one, are the model parameters. In the next pictures the ratio between 
the ultimate and the yield mean curvatures (curvature ratio Pum / Pym) is 
plotted versus the steel tensile percentage for two values of the compression 
steel; the curvature ratio is then represented versus the steel ultimate strain, 
in the case of rebar failure, for two values of the hardening ratio. The different 
behaviour of the element is well highlighted in Fig.5. A sharp tip (f..lcr ::::::; 
0.3%) separates the range corresponding to the steel failure (f..l il-ler), to the 
one related to the concrete collapse (f..lcr Lf..lcr ). These results agree with the 
experimental and theoretical ones [Eligehausen et al., 1987]. The influence of 
the hardening ratio is relevant particularly in the case of steel failure, when 
a variation off us/! ys from 1.05 to 1.2 gives a very large curvature ratio 
decrease. 

a) A's=O 
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0 0.2 0.4 0 .6 0.8 Jl(%) 0 0.2 0.4 0.6 0.8 1 Jl(%) 

Fig. 5. Mean curvature versus steel percentage 

When steel bars are also in the compression zone the structural behaviour 
is modified (Fig 5.b), and the hardening ratio effects are relevant also for 
tensile steel percentage of about 1%. In Fig. 5 the influence of the ultimate 
deformation on the curvature ratio is shown. 

The relation between Pum/ Pym and Eus is almost linear, and the ultimate 
steel deformation effects are particularly evident for steels with higher hard
ening ratio. A ultimate steel strain variation from 2% to 12% gives a ductility 
increase of about 200% for steel hardening ratio f us/ f ys = 1.05, and of about 
400% if Jus/ J ys=l.20. 
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Fig. 3. Mean curvature versus ultimate steel strain 

The procedure, then, has been applied to a beam element subjected to 
combined bending moment and axial force and the obtained results have 
been compared with the available experimental and numerical data, with 
satisfying agreements. The model formulation and the related examples are 
given in [Rinaldi, 1998]. 

In a second phase the models in Fig. 7 have been considered, i.e. a simply 
supported beam subjected to linear bending moment, and a cantilever beam 
subjected to bending and compression. 
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The plastic rotation of the end section (Opt) has been assumed as a plas
tic deformation parameter and evaluated according to the bending moment
mean curvature relationship, approximated with a piecewise linear relation 
defined by the cracking, first yielding and ultimate bending moments, as given 
in Fig. 8. 
Numerical examples and parametric studies have been developed for a sim
ply supported beam with a length of 6.00 m and a rectangular 30x60 em 
cross section. The steel hardening ratio and the tensile steel percentage are 
the parameters, while the ultimate steel strength is constant. The concrete 
behaviour is given Fig. 2. Some of the obtained results are given in Fig. 9 
and Fig. 10, where the plastic rotation versus the steel percentage is plotted, 
for three hardening ratio and for two values of reinforcement in compression. 

a :to 
Bp1 [mrad] A's=O b) so ~~ [mrad] A's=0.5As 

50 50 

~0 f /fs 40 

30 1.20 30 

20 1.10 20 
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02 04 06 08 1 fi{%) 0 02 04 06 0.8 1 fi{%) 

Fig. 9. Plastic Rotation versus steel percentage 

The obtained patterns are similar to those already discussed for the single 
beam-element. Once again in the absence of compressed steel bars, the ranges 
related to the failure of the two materials are well evident. The influence of 
the steel properties is relevant when the collapse is due to the steel, and the 
plastic rotation can be reduced of a factor ten when the ratio f us /! ys varies 
from 1.20 to 1.05. The rotation capacity reduction is not relevant only for 
steel percentage higher than 1%. When the compressed bars are considered 
the ductility is mainly related to the hardening parameters and quite inde
pendent from the tensile steel percentage. The influence of the ultimate steel 
strain on the plastic rotation is similar to the single beam element one. 
Finally some simple framed schemes have been analysed. The behaviour of 
these structures is more complex and governed by the plastic hinge num
ber and location, and by the rotation capacity they are able to exploit. The 
present design criteria aim at obtaining structures able to grant a ductile ul
timate behaviour, and to dissipate the energy in a plastic field. The adoption 
of steel with low values of hardening ratio and ultimate strain could lead to a 
brittle collapse due to an untimely failure of a single section. In order to study 
this aspect a first parametric analysis has been performed for the schemes in 
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Fig. 11. The considered steel (named Feb44 e B500 Tempcore) properties are 
shown in the same figure. The frames are subjected to a constant uniform 
vertical load and to horizontal forces, with a linear distribution, increasing up 
to the collapse of the structure. The model corresponds to the case of framed 
structures under seismic static forces. The schemes have been analysed with 
a numerical analysis according to a finite element discretization of the beams 
and the columns. The previous given beam model has been applied to the 
single element, assumed to be loaded by constant bending moment and axial 
force. 
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Fig. 10. Frame models 

The results obtained for the frames characterised by equal beams and 
columns sections (30 em x 50 em) symmetrically reinforced with As= A's = 
6 cm2 are summarised in Fig. 11. For each scheme and for the two analysed 
steel properties the base shear (V) is plotted versus the top displacement 8. 
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Fig. 11. I3asc shear force versus top displacement 

The single-storey frame (Fig. 11) reinforced with Tempcore bars, com
pared with to the same scheme with FeB44 steel, shows a large ultimate 
displacement reduction, of about 1/3, but a similar ultimate strength. When 
the number of storeys increases, the ultimate load for the two frames is al
most equal, but the ultimate displacement is reduced of about ~ for the B500 
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reinforced schemes. In these cases the untimely collapse of one section (at the 
base of the first column), does not allow the formation of an adequate number 
of yielded zones with sufficient rotational capacity, and therefore an ultimate 
failure with a global collapse mechanism is not attained. 

The obtained results have been interpreted according to a traditional limit 
analysis, by introducing plastic hinges in which the yield effects are concen
trated. Since the sixties the problem of the plastic hinge length has been 
studied leading to simplified formulations [Baker, Amarakone 1964, Sawyer 
1964, Corley 1966, Mattock 1967, Riva, Cohn 1991, Cosenza et al. 1993, Man
fredi, Pecce 1997]. The proposed model allows the evaluation of an equivalent 
plastic hinge length ( lp), based on the material properties, and on the bend
ing moment distribution. In particular, when the moment variation is linear 
along the beam the length ( lp) can be expressed as: 

lp = _1_ ( 1 _ My) (a~ _ J%) 
Z 4Tl Mu 

(6) 

where z is the distance between the sections with zero and maximum 
bending moment, JY s the yield steel stress and a 8 u the steel stress related 
to the ultimate curvature (equal to fu s in the case of steel failure). The 
Tl/0 parameter, related to the ultimate tensile stress in the concrete, to the 
section geometry and to the amount of axial forces, can be easily evaluated 
by means of simple expressions [Grimaldi et al. 1997, Rinaldi, 1998]. The 
obtained results have been compared with the formulation developed by [Riva 
e Cohn, 1994], showing a good agreement.[Como et al., 1999]. 

The ductility differences in the examined frame schemes, can be explained 
on the base of the plastic yield length. In the case of frames reinforced with 
more ductile steels the failure mechanism is characterised by plastic hinge 
length comparable with the section depth. When using rebars with low values 
of hardening ratio, a brittle collapse occurs due to the failure of one section. 
In this case the plastic hinge lengths are smaller, with values equal to 1/4-
1/5 than the one corresponding to more ductile steels (Feb 44). 

4 Conclusions 

The developed analysis and the numerical studies have pointed out and con
firmed the relation between the ultimate behaviour of r.c. structural elements 
and the steel mechanical properties. The basic model is a beam element loaded 
by axial force and constant bending moment, with length corresponding to 
the distance between stabilised cracks. 
The model allows to point out that at yielding a relevant strain increment in 
the steel bar can occur, near the crack, and this strain concentration is highly 
dependent on the hardening steel modulus. In particular, in the limit case of 
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elastic-perfectly plastic behaviour of the steel, at yielding, strain localization 
occurs causing rebar crisis and a global brittle collapse. 
The steel properties strongly affect the element behaviour, also increasing the 
applied deformation up to the final failure of the structure. 
The influence of the hardening ratio and the ultimate steel strain on the 
structural ductility has been emphasised by numerical studies on single ele
ments. 
Similar analyses have been developed for simple beams and framed models. 
The obtained results show mainly the influence of the hardening ratio on the 
rotation capacity or on the global ductility of the structures, and therefore 
the necessity, particularly in the case of seismic actions, of requiring suitable 
minimum values of the steel ductility parameters. 

References 

1. Baker A.L.L, Amarakone A.M. L. (1964), "Inelastic Hyperstatic Frames Analy
sis", Proc. of the International Symposium on the Flexural Mechanics of Rein
forced Concrete. ASCE-ACI, Miami, pp.85-142. 

2. Bazant Z. P., Oh B. H. (1983) "Spacing of cracks in Reinforced Concrete" 
Journal of Structural Engineering, ASCE, Vol.109, No. 9. 

3. Beeby A.W. (1997), "Ductility in reinforced concrete: why is it needed and how 
is it achieved?" The Structural Engineering Vol. 75/No 18, pp.311-318. 

4. CEB Bulletin d'lnformation n° 242 (1998), "Ductility of Reinforced Concrete 
Structures". 

5. CEB FIP (1991), "Model Code 1990", Bulletin d'Infornation no 203 
6. Commission of the European Community (1993) "Eurocode 2. Common unified 

rules for concrete structures". 
7. Commission of the European Community (1994) "Eurocode 8. Design provision 

for earthquake resistance of structures". CEN/TC250/SC8, ENV 1998-1-1/2/3, 
Lisbon. 

8. Como M., Grimaldi A., Rinaldi Z. (1999), "Duttilita e resistenza ultima di 
telai in c. a.: influenza delle caratteristiche degli acciai.", Proc. VIII Convegno 
Nazionale ANIDIS "L 'Ingegneria Sismica in Italia", Torino, Italy. 

9. Corley W.G. (1966), "Rotational Capacity of Reinforced Concrete Beams", 
Journal of Structural Division, ASCE, Vol. 92 ST5, pp.121-146. 

10. Eligehausen R., Langer P. (1987), "Rotation capacity of plastic hinges and 
allowable moment redistribution", CEB Bulletin d'lnformation No.175. 

11. ENV 10080 ( 1995) "Steel for reinforced of concrete-Weldable ribbed reinforcing 
steel B500 - Technical delivery conditions for bars coils and welded fabric". 
UN I. 

12. Franchi A. Riva P. Ronca P. (1997), "Meccanismi di rottura di armature al 
piede di pilastri in c.a. soggetti a carichi ciclici", Atti delle Giomate AI CAP 
1997, Roma 

13. Gambarova P.G., Iori 1., Vallini P. (1998) "Correlazione tra curvatura mediae 
curvatura locale in elementi monodimensionali in conglomerato armato". Re
lazione conclusiva gruppo di studio CNR "Rapporto tm curvatum mediae locale 
in elementi in c. a. ". 



www.manaraa.com

Influence of the Steel Properties on Ductility 309 

14. Giuriani E., Ronca P. (1979), "II metodo di moire per trasparenza per lo studio 
di travi inflesse in cemento armato", Proc. VII Convegno Nazionale A.I.A.S. 
pp. 6.55-6.68. 

15. Grimaldi A., Rinaldi Z. (1997), "Influenza delle caratteristiche degli acciai sulla 
duttilita di elementi inflessi in c. a.", Proc. VII Convegno Nazionale ANI DIS 
"L 'Ingegneria Sismica in Italia", Taormina,. 

16. Macchi G., Pinto P.E., Sanpaolesi L. (1996), "Ductility requirementes for rein
forcement under Eurocodes" IABSE No.4. 

17. Manfredi G, Pecce M. (1997), "Influenza delle proprieta dell'acciaio sulla dut
tilita di colonne in c.a." Proc. VII Convegno Nazionale ANIDIS "L 'Ingegneria 
Sismica in Italia", Taormina, Italy. 

18. Marti P., Alvarez M., Kaufmann W., Sigrist V. (1998), "Tension chord model 
for structural concrete" Structural Engineering International 4/98; pp. 287-198 
IABSE 

19. Mattock A.H. (1967), Discussion of "Rotational Capacity of Reinforced Con
crete Beams" , by W.G. Corley. Journal of Structural Division, ASCE, Vol. 93, 
ST2, April 1967, pp.399-492. 

20. Ngo D., Scordelis A. C. (1967), "Finite element analysis of reinforced concrete 
beams", ACI Journal. Vol. 64(3). Pp. 152-163. 

21. Plauk G., Hees G. (1981), "Finite element analysis ofreinforced concrete beams 
with special regard to bond behaviour", IABSE Colloquium on Advanced Me
chanics of Reinforced Concrete. Delft. 

22. Rinaldi Z. (1998), "Duttilita e resistenza di elementi in c.a.: influenza della 
localizzazione delle deformazione nell'acciaio" PhD Thesis, University of Rome 
"Tor Vergata". 

23. Riva P., Cohn M.Z, (1990), "Engineering Approach to Nonlinear Analysis of 
Concrete Structures", Journal of Structural Engineering, Vol.l16, N. 8. 

24. Riva P., Cohn M.Z. (1991), "Plastic Rotation Capacity of structural concrete 
member" Universita degli studi di Brescia - Dipartimento di Ingegneria Civile, 
Rapporti tecnici. 

25. Sawyer H.A. (1964), "Design of Concrete Frames for Two Failure States", Proc. 
of the International Symposium on the Flexural Mechanics of Reinforced Con
crete. ASCE-ACI, Miami, pp.405-431. 

26. Grimaldi A., Zila Rinaldi. (2000) "Influence of the steel properties on the duc
tility of r .c. structures" Proc. 12 World Conference on Earthquake Engineering, 
Auckland, New Zealand, 2000 



www.manaraa.com

Wavelet Analysis of Transient Signals 
in Civil Engineering 

Pierre Argoul, Thien Phu Le 

LAMI 
Ecole Nationale des Ponts et Chaussees 
77455 Marne-la-Vallee, Cedex 2, France 

Abstract. In this paper, the use of wavelet analysis is examined for the processing 
of transient signals in civil engineering. These signals generally decay with time; 
they are frequency modulated and they can be considered asymptotic. After an 
introduction about the use of wavelet analysis in the processing of transient signals, 
the procedure for the treatment of asymptotic signals with wavelet transform is 
shortly presented and the local time and frequency resolutions are given when the 
mother wavelet is the Cauchy wavelet. The procedure is then applied to two sets of 
signals obtained from civil engineering experiments. The applications concern the 
improvement of the impact-echo method and the processing of free oscillations of 
buildings after non-destructive shock tests. 

1 Introduction 

Since its first definition in the beginning of the 1980s by French researchers, 
especially Grossmann and Morlet [1], the growth of wavelet research in math
ematics has been explosive with significant contributions from numerous au
thors; and its application in signal and image processing has been successful. 
Although wavelet analysis is becoming more and more frequently used in en
gineering applications, it is still far from being systematically used in civil 
and mechanical engineering, certainly due to the ignorance of the properties 
of the wavelet transform (WT). Williams and Amaratunga in [2] highlighted 
the potential benefits of using wavelets for the analysis of engineering data 
and for finding wavelet solutions of partial differential equations. For exam
ple, the two-dimensional wavelet decomposition has been applied to stiffness 
matrices in order to determine the lowest eigenfrequencies which are gener
ally the most critical for the behavior of a structure during an earthquake. 
Another use of the WT consists in projecting the governing differential equa
tions on a subspace spanned by a finite number of wavelets. The parameters 
of the system in the resulting algebraic equations are unknowns; and the in
version of this algebraic problem in order to identify the parameters, is the 
next step. This procedure is applied to linear time-varying discrete dynami
cal systems. These systems are usually appropriate for the description of the 
dynamical behavior of most structural systems that accumulate damage or 
fatigue under both service loads and environmental excitations [3]. 
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In classical parameter identification techniques, it is generally assumed that 
there exists some kind of mathematical operator which relates the model pa
rameters to the data. The first step of our research is to look for a "more 
adapted" representation of the measured data. This "better" representation 
highlights the maximum amount of information within the data and will make 
the parameter identification procedure much easier. Our efforts were first fo
cused on the representation of the transient responses of civil engineering 
structures that can in the case of linear under-damped filters, be modelled 
by exponentially decaying time signals. For these signals, Tang [6] proposed 
the use of new harmonic wavelets that provide a high flexibility in the choice 
of transform bandwith. He emphasized the facility this analysis provides to 
estimate the decay constant of frequency components for signals within a rel
atively narrow band with. In this paper, the use of the wavelet transform with 
progressive mother wavelets (the complex-valued Cauchy wavelets) is stud
ied and proposed for processing the time variation of the spectral contents of 
such signals. The analysis performed is based on the properties of the WT 
applied to asymptotic signals. Important theoretical and numerical progress 
has recently been made for the time-frequency analysis of such signals ( cf. [4] 
and [5]). 
This article is divided into two parts. The first one is devoted to the pre
sentation of the procedure using wavelet analysis for extracting information 
within transient signals. In the second part, the procedure is applied to two 
sets of data. The first set comes from non-destructive impact-echo technique 
for evaluating thickness or detecting voids within concrete slabs. The second 
set concerns the accelerometric responses of buildings under non destructive 
shocks for the assessment of characteristics of their mechanical behavior. 

2 Time-frequency analysis of transient signals 

2.1 The wavelet transform with a progressive mother wavelet 

We hold the following definition for the wavelet transform (WT) of u(t) 

1 !+= (t- b) T,;;n [u](b, a) = ;: -= u(t) 1fin -a- dt (1) 

where the mother wavelet 'l/Jn is the Cauchy wavelet of n order for n :::=: 1 

'l/Jn(t) = _ 2 _. = 1 ei(n+l)Arctg(t) ( 
. )n+l [ ]n+l 

t+z v't2+} 
(2) 

whose Fourier transform (FT) is: ~n(w) = 2rrwn,e-w H(w) where H(w) is the 
n. 

Heaviside function. Cauchy wavelets are progressive : ~n ( w) = 0 for w ~ 0. 
The local resolutions of the WT in time L1t and in frequency L1w are stated 
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in terms of Root Mean Square(RMS) value ( cf [7]) 

L\w = L\w,p 
a 

L\t = aL\t,p (3) 

where L\t,p and L\w,p are the RMS duration and the RMS bandwidth of the 
mother wavelet. For Cauchy wavelets, the time and frequency centres are 
to= 0 and w0 = n + ~- Finally we got 

L\t,p = v 1 
2n -1 

2.2 Wavelet transform of asymptotic signals 

(4) 

For multi-degree of freedom mechanical systems, free oscillations u(t) can be 
written as a sum of frequency and amplitude modulated components uk(t) 

(5) 
k k 

It can be shown that under certain conditions, these signals can be consid
ered as asymptotic, which essentially means that the oscillations coming from 
the phase term are much faster than the variations coming from the ampli
tude term. Some conditions for free oscillations of a mechanical system to 
be considered as asymptotic are when the system is slightly damped linear 
or when the system is weakly non-linear or when the non-linear system has 
small oscillations around an equilibrium point. 
For asymptotic signals, the analytic signal U(t) associated to u(t) can be then 
approximated in the form 

(6) 
k k 

The main feature of the time-frequency transform of asymptotic signals is 
that it is concentrated along curves in the time-frequency domain called 
"ridges" and that the restriction of the wavelet to each ridge called the 
"skeleton" of the transform contains a maximal information : it is very close 
to the component of the signal itself ( cf [5]). For asymptotic transient sig
nals defined by relation (5), each component uk(t) within the global sig
nal will produce one ridge, say ark(b). There are several ways to define a 
ridge ark(b). Here, for each value of b, we look for the value of a such as 
IT,pn [uk(t)] (b, ark(b))l =max IT,pn [uk(t)] (b, a)l. More precisely, we search for 

a 
the local maxima of the absolute value of the WT and the ridge is defined by 

(7) 
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where w0 n is the angular frequency corresponding to the maximum of :(f;n(w) ; 
won = n for the Cauchy wavelet. Torresani [4] also showed that in the case of 
a progressive wavelet, the value of the wavelet transform of each component 
uk(t) of the signal on the associated ridge can be expressed as 

(8) 

Depending on the properties of the mother wavelet and on the regularity 
of the component uk(t), Torresani gives in [4] some upper limits for the 
remainder r(b,a). When the instantaneous frequency is constant (ak(b) = 

wk), along the ridge ark(b) = ~ that is constant, the local resolutions LJ.tk 
in time and in frequency LJ.wk given in relation ( 4) become 

1 [;f;2 LJ.tk =- ---
Wk 2n -1 

(9) 

3 Applications 

3.1 Non destructive evaluation of concrete structures by the 
impact-echo method 

This application initiated by 0. Abraham in LCPC Nantes where the exper
iments are conducted, deals with the non destructive impact-echo technique. 
This method is based on the analysis in the frequency domain of the transient 
seismic response of a structure to an impact. It allows to estimate thicknesses 
and more generally to detect voids and the presence of interfaces between ma
terials with different mechanical impedances. A transient elastic stress wave, 
generated by a shock on the surface, propagates through the structure as the 
sum of surface (Rayleigh), compression (P) and shear (S) waves. Within a 
slab, these waves are first reflected by faults (whose dimensions are in com
parison with the wavelength) and by the bottom of the slab. Then, they 
alternate between the fault, the top and the bottom of the slab. Once the 
Rayleigh wave has dissipated, the energy of P-wave is predominant compared 
to that of the 8-wave. The impact-echo method characterizes the position of 
faults existing in the structure by the frequency analysis of the P-wave echoes 
within the response signal. The medium within the slab is assumed to be ho
mogeneous, isotropic and linear elastic; the thickness e of the slab and the 
depth d of an eventual void can be then expressed from 

Vp 
e=--

2 fe 
(10) 

where the resonance frequency fe (respectively !d) correspond to the travel 
of the P-wave from the top of the slab to the bottom (respectively the edge 
of the void) and back again and Vp is the P-wave velocity. Since the mid-
1980s, this technique has been applied successfully for the search of faults in 
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concrete. But in some cases, the current method fails or the diagnosis is not 
straightforward for example when the thickness resonance frequency may be 
not clearly apparent and it becomes difficult in the spectrum to decide for the 
thickness resonance frequency. Sansalone et al reduced R-wave contributions 
to spectrum by clipping technique [8]. Abraham et al [9] proposed to use 
a moving time window to select the time interval where P-wave dominates. 
With Abraham, we started to study the use of the wavelet transform for the 

' ' 

~----;;":;-----;;-:-----::o.76 ---::o.7s ----:", (s) 
,ll; 10-J 

peakJ 

2 l • J 
rrrq~~m~::r K 10• (Hz) 

Fig. 1. Transient seismic signal and its Fourier transform 

processing of such signals and some preliminary results are presented. The 
processed signal comes from numerical simulations made by Abraham with 
the finite element software CESAR, the measurement point is located under 
the impact point. The exact value for the thickness of the concrete slab and 
the P-wave velocity are e = 40cm and Vp = 4470m/ s. The lateral dimensions 
of the slab are assumed to be large relative to the thickness. The seismic sig
nal is plotted in Fig. 1 with the absolute value of its Fourier transform. Three 
peaks are present in the spectrum with similar amplitudes; with the current 
approach, it is difficult to choose the 'right" peak. To remedy this problem, 
the wavelet analysis of this signal is then performed with two different values 
of n (n = 30 and n =50) in order to investigate the effect of local time and 
frequency resolutions. The ridges are also extracted with the procedure pre
viously described. In Fig. 2, wavelet transforms with local ridges are plotted. 
According to relation (9), it is obvious that when n is increasing, frequency 
resolution L1wk along a ridge is increasing while time resolution L1tk is de
creasing. Moreover for n fixed, relation (9) shows that L1tk is proportional to 
...l..., so time resolution is "better" for higher frequencies. 
Wk 

The effect of the impact force (energy concentration, starting and ending 
time), the effect of the R-wave reflection from the lateral edges (similar form 
to that of impact, starting time after the one of P-wave) and the effect of 
P-wave echoes (starting time) can be easily seen in Fig. 2. 
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Thus, for all those reasons, f = 5270Hz (first peak) is chosen to be the 
thickness resonance frequency. Thickness is then estimated by relation (10) : 
e = 42,4l(cm) with a relative error of 6e = 6.03(%). 
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Fig. 2. WT of the transient seismic response with position of the local resonance 
frequencies 

3.2 Assessment of the mechanical characteristics of buildings 
submitted to non destructive shocks 

This research is made in collaboration with C. Boutin and S. Hans of the 
"Laboratoire des Geomateriaux" in Lyon (France) where the experiments 
are conducted. The data comes from a research program on the seismic vul
nerability of buildings. The aim of this program is to improve the estimation 
of the seismic risk in urban environment; it is based on non destructive tests 
applied to modern buildings built during the period 1955-1975. The responses 
of several buildings under shock tests have been processed by the continuous 
wavelet transform. Cauchy wavelet of order n = 100 is normally used for 
numerical computation. Higher order n = 1000 has been chosen for build
ings exhibing very close eigen frequencies (cf [10]). The building under study 
is a seven storied one built in 1970 and constituted of concrete shear walls 
and reinforced concrete floors. It is 30 metres long, 14 metres wide and 22 
metres high. Non destructive shocks were applied by a mechanical shovel on 
the fa<_;ade of the building. Accelerometers installed at floors 1, 3, 5 and 7 of 
the building allow the collection of free oscillations of the building after the 
shock. The level of the measured accelerations is about w- 2g involving that 
the behavior of the structure stays in the quasi-elastic domain. Fourier and 
wavelet analysis of these signals are performed and the results are plotted in 
Fig. 3 for the longitudinal response of the seventh floor. From the absolute 
value of the WT of accelerometric responses, the ridge and the correspond
ing amplitude and phase term for the two first modes are extracted . For each 
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Fig. 3. Measured and processed signal successively with Fourier and wavelet analy
sis 

ridge arkj(b), the ratio Tkj(b) of the extracted amplitude of the response at 
the jth floor to that of the response at a reference floor is computed as well as 
the difference dkj (b) between the phase term of the response at the jth floor 
and that of the response at a reference floor (here the floor 7 is the reference 
floor). The time evolution of both these parameters for the first mode are 
plotted in Fig. 4. It is noticed that the shape of the kth modal vector can be 
estimated from rkj (b) obtained at each instrumented floor ( cf [10]). 
The processing reveals a slight increase of the eigenfrequency just after the 
shock (when t E [1, 2] sec ). The variation of the square of the eigenfrequency 
versus roof displacement amplitude exhibited a quasi-linear decrease ( cf. [10]). 
This decrease (also observed by Trifunac in [11] with harmonic tests) has 
been interpreted as a softening of global rigidity of the structure and soil 
foundation with the increase of the excitation amplitude. This weakly non
linear behavior is usual for geo-materials such as concrete or sand. Moreover, 
when the behavior is assumed to be linear with the Basile assumption for the 
viscous damping, the two parameters Tkj(b) and dkj(b) previously defined are 
constant versus time. We propose the deviation of these parameters from the 
"linear" behavior as an indicator of the presence of non-linear effects. For 
the first mode, we notice for lower floor that the time evolution of d11 (b) is 
no longer constant when t E [1, 2] sec, pointing out that the origin of the 
non-linear effect can be attributed to the non-linear behaviour of t he soil
structure interaction. 
In conclusion, the use of time-frequency analysis has several advantages for 
the processing of transient signals in civil engineering such as simplicity of 
implementation, quality of the obtained information, and allows a better 
comprehension of the studied phenomenon. 
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1 Introduction 

The ability to track the dynamic and physical behaviour of a class of large 
and flexible structures - typically discrete spatial structures or adaptable 
structures for which inertia or stiffness may vary significantly - is of great im
portance. Likewise, the development of new structural concepts and original 
applications such as tensegrity systems [1] made up of both cables and bars, 
shell's folding/unfolding and deployable covers involves creating skillfull tools 
to accurately identify the structure even after marked alterations. 
In contrast to traditional approaches, we decided to build the model directly 
on the basis of the experimental results - the selected control and measure
ment points - without any preliminary theoretical model. The recent and 
relatively unknown subspace-state methods, which identify a discrete space 
state model (being composed of the following quadruple of matrices: A, B, C 
and D) of the studied system, has proven [2] very efficient for solving such 
problems. 
Besides also identification of classical modal parameters, the state space rep
resentation allows relatively easy recognition of physical matrices provided 
that the number of outputs l tested is the same as the number of identified 
modes n. This ability to solve the inverse problem is of great interest in the 
control domain, particularly for discrete structures with concentrated masses 
and separate elements. Few preliminary numerical results have confirmed the 
principle. Unfortunately, the main theoretical condition, recalled just above 
( l = n), is difficult to apply practically. 
In order to overcome this initial limitation, several methods have thus been 
developed which combine two at a time "sub-state space" models (e.g. partial 
models including only a few inputs/outputs and a few modes) of the same 
structure. Finally, the result is an enlarged space-state model including all 
inputs, outputs and modes coming from these different models. Several data 
records 1 can thus be associated in order to yield an extended dynamic rep
resentation of the structure. 
The theoretical background is then briefly summarized, and the paper presents 
numerical and experimental results acquired with this identification scheme. 

1 ... collected sucessively at different points. 
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First, to initially obtain good identifications, the algorithm - named N4sidr 
- derived from subspace methods is used. Secondly, the modal and physical 
parameters are computed when a sufficiently enlarged space-state model is 
reached. Physical matrices identified from corrupted data are compared with 
true matrices. A real variable mass system is also studied to assess the dy
namic tracking of variable factors. 

2 Theoretical background 

In the identification field, frequency domain techniques are often the best 
known and the most frequently used. Yet many time domain identification 
methods have been described over the past few years. They are able to iden
tify dynamic parameters and often produce models more accurately. 
More recently, a class of subspace-state methods have been developed and 
shown their superiority in relation to the classical time domain approaches [2]. 
Instead of classically pre-estimating a large-sized block Hankel matrix made 
up of Markov parameters, subspace-state algorithms estimate the model di
rectly from the input/output data without requiring such accuracy-consuming 
steps. Moreover, they make use of numerically stable methods such as RQ 
decomposition and singular value decomposition (SVD) [3]. 
The subspace identification algorithm taken into account in this paper is the 
robust version of N4sid (N4sidr ), which stands for "Numerical algorithm for 
Subspace State Space System Identification" of P. Van Overschee and B. De 
Moor [4], [5]. 

2.1 State space representation 

It provides a discrete time, linear, time-invariant state space model which is 
mathematically described by the following set of equations2 : 

where: 

• xk E ~2n is the state vector of the process which contains the numerical 
values of 2n states 3 , uk E ~m and vk E ~~ are respectively the measure
ments of the m inputs (forces) and l outputs (usually accelerations). 

• A E ~2nx 2n , B E ~2nxm and C E ~lx 2n are respectively the state ma
trix, the input and the output matrix. D E ~lxm is the direct feedthrough 

2 E is the expected value operator and lipq the Kronecker delta. 
3 Consequently, n is the number of modes. 
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term4 . A characterizes the complete dynamics of the system: the n fre
quencies wi and n damping ratios Ei are easily determined from its com
plex eigenvalue pairs Ai 
(i = 1,··· ,2n) with Ai = ±(Ei x wi) +i x wiJ(1-s;). 

wk and vk are umeasurable vector signals; they are supposedly zero mean, 
stationary, white noise vector sequences. Q, S and R are their associated 
covariance matrices. 

2.2 State space identification problem 

Given N measurement of the input and output of the unknown real system, 
the multi input/output identification problem as described by (1) involves 
estimating: 

• the order n of the unknown system. 

• the quadruple state space matrices within a similarity transformation T, 
i.e. (TAT- 1 , TB, CT- 1 , D). 

The key elements of subspace methods are using geometric tools and ma
nipulation of subspaces spanned by rows and columns. Irrespective of an 
specific subspace algorithm, the identification process is twofold [3]. The first 
step performs both state sequence Xs and extended observability matrix Fs 
directly from the given input/output data, where: 

Fs= [ ~] 
CAs- 1 (ls,2n) 

(2) 

In a second step, the state space representation up to a similarity trans
formation is obtained. Distinctions between the different subspace algorithms 
are ultimately due to different numerical implementations. 

2.3 Physical parameters identification 

In order to subsequently identify m, c and k (mass, damping and stiffness 
matrix respectively ) , the main problem involves retrieving the "physical" 
form of the estimated state space model usually expressed in continuous time 
([ ]c ) as: 

(3) 

4 D is most often 0 in continuous time. 
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To solve this problem, it has been shown in [6] that there is a unique simi

larity transformation P, defined as P = [ c~.5t] , that reaches this "physical" 
space. 

Note that m, c and k can be determined only if the number of output 
l equals the number of modes n. P must be invertible and then square; a 
condition that is seldom satisfied under real tests. 

2.4 Re-association methods 

AcBc Cc De 
n modes/outputs 

m inputs 

A2B2C2Dl 
n2 modes 
m2 inputs 
11 outputs 

Fig. 1. Re-association principle 

Methods that combine two at a time sub-state space representations (Fig
ure 1) have been developed in order to increase the number of outputs but 
also the number of inputs and the number of modes of a reduced model. 
A detailed description of three related methods can be found in [7]. The key 
step lies in the projection properties into a common base [8] of each sub-state 
space representation allowing subsequently linear association of input, output 
and modes. 

3 Simulation results 

In this section, a constant 4 degrees of freedom system is considered, defined 
as: 

m = diag ([ 300 220 300 310]) 
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[ 
23 -15 0 8] c- 102 -15 26 11 - 8 -11 13 -2 

0 -2 12 
[ 

32 -16 0 8] k- 104 -16 36 -20 - 8 -20 35 15 
0 -15 29 

(4) 

In order to validate the efficiency of the physical parameters autonomous 
5 identification principle, we first excite the studied system with 1 white noise 
input, and 4 outputs are used. Given that the number of modes ( 4) equals 
the number of outputs, no combining methods are necessary here. 

1200 data samples are used with the sampling frequency set at 30Hz. The 
number of data block rows s is set at 12. 50 runs are systematically performed 
and the true system order (namely 4) is specified for each one. The data are 
then averaged. 

For zero noise level, the identification results agree perfectly with the true 
physical matrices. For 1% and 10% noise level, the Figure 2 shows the bands 
covered by the evaluated relative estimation errors 6 when the four inputs 
are selected successively. 

Examination of these results highlights the fact that the stiffness matrix 
is the easiest to identify with the mass matrix. On the other hand, increasing 
the noise level is detrimental to the overall consistency; the damping matrix 
remains the most sensitive. 

5 10 20 40 60 70 [% 

Fig. 2. Relative estimation errors of m ,c & k versus selected input 

Finally, Table 1 gives the estimated matrices for 10% noise and demon
strates a good identification process. 

5 Nothing of m, c or k is known. 
6 Ern = 100 'j;,t ' where m is the true mass matrix . Alike for c and k. 
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m = diag([302.56 222.97 317.42 290.85]) 
c= k= 

22.81 -14.738 -0.162 0.05 32.026 -15.94 -0.106 -0.071 

102 -14.373 25.223 -10.679 0 .107 104 -15.94 35.784 -19.988 - 0.109 
-0.072 -11.094 13.054 -2.053 0.036 -19.988 34.911 -14.947 
0.313 -0.48 -1.782 12.273 0.255 -0.444 -14.947 29.443 

Table 1. Estimated matrices - 10% noise level 

In a second step, with the same 4 d.o.f. system and the same numerical 
conditions, the capacities of the re-association methods are evaluated. Many 
inputs/outputs sequences are tested (with at least here one input and two 
outputs per identification) with the aim of producing an enlarge state-space 
representation made of 4 outputs. In order to identify the physical matrices , 
we assume the mass matrix m is entirely known. 

For zero noise level, the results are perfect and are not shown. For 1% and 
10% noise level, F igure 3 summarizes the evaluated level errors . Compara
tively, they are almost equivalent to previous simulations performed without 
sub-models association highlighting the efficiency of such combining tech
niques. But lower results can be expected if m is autonomously identified 
rather than assumed to be known. 

~ 1 
S: 1' 

5 10 20 40 60 70 [% 

Fig. 3. Relative estimation errors of c & k wit h sub-models association 

4 Experimental results 

This section describes the results of tests which were conducted on a simple 
cantilevered beam. This structure was excited consecutively at different lo
cations using only one random noise input. 2 or 4 accelerometers were used 
for measuring the dynamic response. Two analyses were carried out on this 
st ruct ure. 

'--7 The first experimental sequence involved evaluating the capacity of t he 
whole identification scheme to track noticeable alterations in t he physique 
of the system. We chose to modify the mass distribution of an equivalent 
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2 degrees of freedom structure by successively overloading each node with a 
1.2 kg mass. The analysis was performed on a 0-100 Hz frequency range. The 
sampling frequency was set at 1000 Hz and 2000 data points were collected 
during the test. The number of data block rows s was preset at 10 to effec
tively identify 10 modes (one input only). Nevertheless, after the reduction 
process (unstable and out of range modes are removed), only 2 modes were 
clearly selected. 

Inspection of the identified mass matrices (Table 2) clearly highlighted the 
capacity to track weight variations despite a slight overestimation probably 
due to the comparatively high mass of the electromagnetic exciter. 

no over loading 1.2 kg on node 1 1.2 kg on node 2 

[3.80 . ] 
. 1.25 

[5.94 . ] 
. 1.51 

[4.28 . ] 
. 2.85 

Table 2. Identified mass matrices under test 

As for the stiffness matrix, its different estimations were logically sta
ble (less than 5.5% variation). On the other hand, the damping matrix was 
more affected; its high sensitivity has already been shown with numerical 
simulations. 

no overloading 1.2 kg on node 1 1.2 kg on node 2 

k 105 [ 6.91 -2.62] 
-2.62 1.13 

105 [ 7.22 -2.73] 
-2.73 1.19 

105 [ 6.59 -2.49] 
-2.49 1.08 

c [ 72.27 166.45] 
-137.43 -24.06 

[ 113.79 183.19] 
-153.82 -26.17 

[ 126.63 316.60] 
-147.73 -77.26 

Table 3. Identified stiffness and damping matrices under test 

Y The second field tests were aimed at experimentally validating the 
capacities of the re-association methods. In order to obtain an equivalent 4 
d.o.f. model having 4 outputs, each sub-identification involved 3 measurement 
outputs and one input (either at the middle or end of the beam). 2000 data 
points were gathered on a 0-500 Hz frequency range with a 2000 Hz sam
pling frequency (just 1 second!). The same four modes were systematically 
selected among 10 identified (s = 10), thus avoiding the need to combine 
modes during these tests. Simultaneously, direct identification (without any 
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sub-models association) using whole outputs was performed to obtain a com
parative base. 
Regardless of the test, all physical matrices were entirely identified without 
any preliminary knowledge of them. As shown in Figure 4, the reconstructed 
outputs calculated with the combined state space model or with the direct 
identification were very close to the real data. These traces illustrate the high 
efficiency of the N4sidr algorithm and the low effects of such re-association 
processes on each other. Good subsequent autonomous identifications of the 
physical matrices could thus be expected. The Table 4 sums up the values of 
m, c and k obtained by the direct or the combining method respectively. 
The comparison gives similar results. However, note that parameters that are 
supposed to be zero in the stiffness and damping matrices were not correctly 
identified. 

Re-building of the output y 4 with N4sid,. 
Identifications performed wit h filtered data (hanning)- Id n°1: u2Yl2:! - ld n°2: u2Y234 

X 105 

er-----.-----or-----.-----,------.-----.-~--~--. 

6 

·6 

0.02 

··.: .. 
10\ ;I I . . 

·· . ... 

0.12 0.14 

Fig. 4. Comparison between reconstructed output and real output 
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Direct identification 
m kx 107 ex 103 

r5· l [ 1.12 -0.92 0.35 -008] [ 0.03 1.09 -0.45 0.45] 
4.60 -0.92 1.31 -0.79 0.24 -1.04 -0.34 0.07 -0.89 

3.19 0.35 -0.79 0.71 -0.27 0.85 -0.53 0.67 0.61 
0.90 -0.11 0.27 -0.27 0.11 -0.43 0.50 -0.53 -0.11 

Identification with combining method 
m kx 107 ex 103 

r·
9 l [ 1.15 -0.95 0.36 -009] [ 0.10 1.34 -0.01 0. 71 l 

4.77 -0.95 1.35 -0.81 0.24 -1.52 -0.57 -0.42 -1.18 
3.30 0.36 -0.81 0.73 -0.28 0.93 -0.42 0.98 0.78 

0.93 -0.11 0.28 -0.28 0.12 -0.46 0.46 -0.65 -0.17 

Table 4. Identified physical matrices with and without re-associated outputs 

5 Conclusion 

In order to perform high level dynamic and autonomous identification of phys
ical parameters of structures, an algorithm from the class of subspace state 
methods was successfully evaluated. Subsequently, the principles of original 
methods which are able to combine several sub-state space models of the 
same system have been succinctly outlined and numerically validated. 

Then these different identification processes were tested on a simple real 
structure and showed their high robustness, particularly concerning mass and 
stiffness matrices. 
These encouraging results allow to extend this identification scheme to larger 
structures. 
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Abstract. This paper is devoted to the statistical study of the effective linear prop
erties of random materials, that is to say microstructures are random lattices given 
by a stochastic process. The local numerical procedure associated to homogeniza
tion techniques is based on a wavelet-element method. The numerical results are 
compared with classical theories. A new approach is obtained in order to determine 
these effective properties if the details of the microstructure are not well-known. 

1 Introduction 

The purpose of this paper is to determine and to compute the effective prop
erties of linear random heterogeneous media. While natural geomaterials are 
heterogeneous, they are regarded as homogeneous with effective properties 
which manipulate the overall behavior. Grounds, for example, are usually 
modeled as a body consisting of homogeneous materials with such effective 
properties. Behavior of these grounds cannot be predicted if the effective 
properties are poorly determined. The necessity to incorporate more detailled 
informations on the microstructure is clearly recognized. In the last years, a 
large part of literature has presented measurements, empirical and theoret
ical techniques in order to determine these effective properties. Clearly, the 
numerical cost to attack this problem directly for a given material sample is 
prohibitive. In former papers, the authors have presented numerical scheme 
associated to homogenization techniques in order to take into account the de
tails of the microstructure [4-6,8,11]. These algorithms are based on wavelet 
basis and permit to predict the effective properties from the knowledge of 
the microstructure. Thus, it is possible to optimally design linear composite 
materials from real images of the sample. 
In most cases, unfortunately, the details of the microstructure are not ab
solutely known, and leads us to estimate the effective properties from sta
tistical studies. In a famous paper [14], Torquato has presented results con
cerned with the case where a partial statistical information, as correlation 
functions, is given. Improved bounds on effectives properties of two-phase 
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random heterogeneous media are obtained. In this paper, we suppose that 
only the volume fraction of each phase is known, and we intend to find the 
averaged effective properties of the composite. In addition, we suppose that 
the microstructure is given pixel by pixel i.e. the characteristic shape of the 
microstructure components is a small square and its characteristic lenght is 
the lenght of the pixel. 
In section 1, we present the notations and the mechanical problem. Section 
2 is devoted to the numerical algorithm. In section 3, we present a statistical 
study for a AlSiC composite. The results obtained are compared with Hashin 
and Shtrickman bounds [9] and with the self-consistent schema [10,13]. At 
the end of the paper, perspectives to this work are presented. 

2 The mechanical problem 

We consider a two phase isotropic elastic composite and we intend to study 
the behaviour of this heterogeneous media. A step of homogenization con
sists in determining the effective properties which characterize the equivalent 
homogeneous medium. Let us consider a plane periodic composite fl (macro
scale, variable x) and a rectangular periodicity cell Y (micro-scale, variable 
y). We assume that the bonds at all interfaces of the composite are perfect. 
The elasticity coefficients Cfjkl are supposed to be periodic on the period Y. 
In elastostatics, the problem (Pc:) is written 

Problem(PE:) 
Find uc: E V such that ac:(uc:,v) = L(v), V v E V, 

where ac:(u, v) = J Cfjkzekz(u)eij(v)dx, 
n 

ekz(u) = ~(uk,l + uz,k), 

L(v) = J fvdx + J Fvdl 
n a,n 

The solution of the previous problem uc: tends to u in V, the space of 
admissible global displacements, u is the solution of problem P [1] 

Problem(?) 
Find u E V such that a(u,v) = L(v), V v E V, 

where a(u,v) = J Aijklekz(u)eij(v)dx 
n 

and Aijkl = mea:(Y) j(Cijkl + Cijpqepq(uk1))dy. 
y 
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The determination of the displacements uij needs to solve three local 
problems on Y (Problem Py) in the space H = (H~er(Y)) 2 , the set of ad
missible local displacements: 

Problem(Py) 
Eij be given, find uij E H such that ay(uiJ,v) = l(v) Vv E H, 

where ay(u, v) =I cijkl(y)eij(u)ekz(v)dy 
y 

and l(v) =-I cijkl(y)Eijekz(v)dy. 
y 

3 Numerical procedure 

In this section, we focus on the solution of problem Py. This problem is 
solved by a wavelet-element method [15] associated to Daubechies wavelets 
[3]. This method is based on the standard form of the discretized operator 
[2]. Details concerning this method can be found in previous papers of the 
authors [5,8,?]. Let Aj = [0,2J -1], the local displacement u = (u1,u2) is 
approached in the space VJmax as 

PJk(y) = ¢jk, (yl)¢;k2 (y2), Pjk(y) = ~jk, (yl)~;k2 (Y2), 

Pjk(y) = ~jk, (y1)¢;k2 (Y2), Pjk(y) = ¢jk, (yl)¢;k2 (y2), 

where ¢jk(x) = 2J12¢(2Jx -l) and ~jk(x) = 2J/2~(2Jx -l). ¢is the scale 
function and ~ is the associated wavelet. Problem (Py) is discretized using 
this approximation, well-conditioned stiffness matrices are obtained [15,2]. 

4 Numerical results 

In this part of the paper, numerical tests are presented. They are concerned 
by a AlSiC composite. The influence of two parameters is studied: the volume 
fraction of each component (Aluminium and Silicium) and the distribution of 
each material in the microstructure. For each volume fraction, we proceed to 
about 5000 draws (random lattices) and we study from a statistical point of 
view the results obtained. In the following the fourth order tensor A is repre
sented as a matrix of order 3. For a volume fraction of 70 % the variations of 
each elasticity coefficient are presented in Fig. 1 for about 5000 microstruc
tures. At first sight, the fluctuations seem very large. In the other hand, one 
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Fig. 1. Homogenized plane elasticity tensor (MPa) versus draws (volume fraction 
70 %), linen and column m correspond to Anm 

can present the histogram of each component of the elasticity tensor. We 
observe a Gaussian distribution of the values (Fig. 2) . 

The averaged values of each coefficient of the elasticity tensor are given in 
Fig. 3. We observe the convergence of the coefficients to an mean value along 
the draws. The values obtained in Fig. 3 show that the numerical limit is an 
isotropic material. In particular, we have A13 = A23 = 0 and Au = A22· 
Thus, it is possible to compute the bulk and shear moduli of the limit material 
(Averaged bulk and shear moduli). 

In the following we denote by L-HS and U-HS the Lower and Upper 
Hashin and Shtrickman bounds [9] . We denote by WAV the Averaged Value 
obtain by the Wavelet-element method. Fig. 6 shows that the relative behav
ior of the value is split ted in three phases: in the first one, for volume fraction 
lower than 0.25, the LHS and the WAV values are very closed. The second 
phase corresponds to volume fractions between 0.25 and 0.95. In t his phase, 
the WAV value is intermediate between the two HS bounds. The third phase, 
for a volume fraction larger than 0.95, shows WAV values closed to the U-HS 
bound. 
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Fig. 2. Histogram of plane elasticity tensor (volume fraction 70 %) 

We compare the results with the self-consistant schema for the shear mod
ulus and for volume fractions lower than 0.5. We observe in Fig. 7 that for 
the lower value of the volume fraction (lower than 0.1) the L-HS value, the 
self-consistant schema (denoted SCS) and the WAV value are quite similar. 
For larger values from 0.1 to 0.25 the values L-HS and WAV are equal and 
the SCS value is lower than the two other one. For volume fractions larger 
than 0.25 and lower than 0.4, the L-HS and SCS values are closed , and lower 
than the WAV value. 

5 Concluding remarks and perspectives 

Generally, it is impossible to determine exactly the effective properties of 
random heterogeneous media. In the literature, rigorous statements about 
these effective properties take the form of bounds. In this paper, we obtain 
another kind of bounds as the form of an average and a standard deviation. 
An important result is the numerical convergence of the stochastic process of 
homogenization to an averaged solution, that is to say that the limit , when 
the number of draws tends to infinity, of the potential energy corresponding 
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Fig. 3 . Averaged homogenized elasticity tensor versus draws (volume fraction 70 
%) 

to a 'random lattice' is the potential energy of an isotropic material. This 
material has effective properties depending on the volume fract ion of each 
component. For lower volume fraction, the material has properties closed to 
the lower Hashin and Shtrickman bounds and to the self-consistant schema. 
A 'numerical t heorem' is obtained. Similar results are obtained for different 
kinds of materials (Resin-Glass mixture for example). 
Two ways to this work are proposed : the first one is a study of the influence 
of the shape of the lattices. We propose to study the same problem with 
different morphologies : n-pixels in one direction, association of n-pixels in 
a neibourough of a point, .. . Another perspective is to study the effective 
properties for more complex behavior: piezoelectricity couplings, t hermome-
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Fig. 4. Averaged homogenized elasticity coefficients All and A22 (volume fraction 
70 %). If we study in details the variations of the averaged coefficients, we observe 
that the mean is obtained for a small number of draws and that the standard 
deviation is small compared to the coefficients. In the case presented in Fig. 4, 
i.e. for a volume fraction equal to 70 %, the mean is equal to 12358 Mpa and 
the standard deviation to 768 Mpa (± %) . The values are included in the interval 
(12083,12682]. 

chanica! couplings, plasticity [12], ... The efficiency of our method permits us 
to envisage to treat this kind of problems. 
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Abstract 

Tensegrity systems are innovative systems in the field of Civil Engineering. 
Architects have been spurred on by their light weight and their apparent 
transparency. "A tensegrity system is system in a stable self equilibrate state 
comprising discontinuous compressed components inside a continuum set of 
tensioned components". 

Fig. 1. Two tensegrity systems : Expanded octahedron and half-cuboctahedron 

This communication leads towards tensegrity systems design. As a first 
step, behaviour study shows that more than classical parameters design (me
chanical characteristics and cross section area), specific ones exist and should 
be taken in to account (selfstress level, rigidities ratio and selfstress distrib
ution). 

Seeing that tensegrity systems are generally steel structures, the design 
code is the EUROCODE 3 in which the selfstress loads are not taken in 
account. 

A selfstress load can be considered as a dead one which can be resistant 
load because the rigidity of tensegrity systems is closely dependant on the 
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selfstress level and as an acting load because each element stability is related 
to the selfstress level. 

Consequently, two partial security coefficients should be affected to the 
selfstress value on load combinations : 

'Y M,s = 1.2 for the acting selfstress case 
'Y M,S = 0.8 for the resistant selfstress case 

All these considerations lead to a design procedure conform to EUROCODES. 
This design procedure is applied to a double layer grid which is a result of 
an assembly of 36 half-cuboctahedrons. 
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1 Introduction 

Some contemporary structures like cable nets, membranes and tensegrity sys
tems are initially stressed systems and require form finding processes. The 
final shape has to fulfil equilibrium conditions. Corresponding relations are 
not linear and initially a so-called "forcedensity method" has been developed 
by Linkwitz and Scheck (1971) in order to linearise the problem. This paper 
describes its utilisation, and an innovative form-finding process the Surface 
Stress Density Method, based upon the use of isotropic stress tensors, which 
allows the calculation of broad range of structures and appears as an ex
tension of the existing Force Density Method. Several illustrative examples 
point out the efficiency of the procedures and also their adaptation to the 
requirements of either architects or engineers. 

2 Force density method 

This method is used when the system is modelled by an assembly of straight 
links: cable nets, membranes in case of assimilation to cable nets and tenseg
rity systems. 

2.1 Equilibrium relation 

Notations The following notations and definitions are used: 
n, number of nodes, b number of links 
z;ib ' manufacture length of element "j" ' "free" length 
lJ , Length of element "j" in reference configuration (assembled and not 

loaded) 
lj , Length of element "j" in current configuration (assembled and loaded) 
Vectors of node coordinates (global reference system) 

{X} = { X1, ... ,Xi, ... , Xn} t, {y} = {Yl, ···, Yi, ... , Yn} t, { Z} = { Z1, ... , Zi, ... , Zn} t 
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Vector of external applied actions {!} = { ... ,fix' fiy' fiz, ···} t 

External action on node "i", {fi} = {fix,fiy,fiz}t 

Force density coefficient q1 = f& with T1, internal effort in element "j" , 
J 

T1 > 0, traction, T1 < 0, compression. 

Equilibrium equation Equilibrium equation for node "i" with force density 
coefficient is given by: 

L (xi - xh) ·% = fix 
j3i 

L (Yi - Yh)·qj = fiy 
j3i 
L(Zi- zh)·qj = fiz 
j3i 

For the whole system: 

[A]. {q} = {!} 

(1) 

(2) 

With [A], equilibrium matrix defined by components of members. This 
matrix has "3n" lines corresponding to the "n" nodes, and "b" columns, one 
by element. The number of lines is then reduced toN, N being the number 
of degrees of freedom. 

It is convenient to build this matrix with the connectivity matrix [C], 
which traduces the relational structure of the system. [C] is a b lines, n 
columns matrix. General term is C1i ; for nodes "i" and "j" with no link, C1i 

is equal to zero. When nodes are linked, then: 

cji = -1 or cji = 1 (3) 

Negative value for i < j in the numbering of nodes, and positive value 
for the opposite case. Each line of equilibrium matrix, corresponding to node 
"i" and X-direction is given by: 

[ALx,• = [CJ!,i . [X] (4) 

In this expression [X] is a diagonal matrix comprising the components of 
the b members along X direction. Similar expressions are derived for Y and 
Z-directions. The whole matrix of equilibrium can be written line by line and 
organised sequentially according to X, Y and Z directions. 

The writing of equilibrium equation of node "i" along X -direction in terms 
of force densities is given by: 
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[CJ!,i [X] { q} = {fix} (5) 

According to diagonal matrix properties, we may express: 

[X] {q} = [Q] {X} 

With [Q], diagonal matrix of force densities. 
And since: 

[X]= [C] {x} 

(6) 

(7) 

Equilibrium equation for all nodes with degree of freedom along X direc
tion, takes the following form: 

[C]t [Q] [C] {x} = Ux} (8) 

Values associated with nodes are split in two parts to introduce boundary 
conditions (for pre stressed systems with fixed nodes). This leads to a par
tition of the connectivity matrix. The first part is built with terms related 
to free nodes (subscript "l", and subscript "lx" for x-direction), second one 
with those which qualify fixed nodes along the considered direction (subscript 
"f" is mentioned for these values, and" fx" for X-direction). If, in equations 
(8), we consider only the ntx equilibrium equations associated with ntx free 
nodes, we have: 

(9) 

We define [Dx] as" connection matrix" containing force density coefficients 
of nodes which are free along the direction X, as follows: 

(10) 

And if we note: 
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(11) 

We reach the matrix writing of equilibrium with force density method 
along X -direction: 

(12) 

and similar expressions along Y and Z-directions. 
It is convenient to notice that in case of completely fixed or free nodes, 

connection matrices are identical for X, Y and Z. 

Solving system (12) for each direction leads to a geometry satisfying equi
librium equation with chosen force density coefficients. 

2.2 Applications 

Pre and self stressed systems For initially stressed systems, values of 
force density coefficients are chosen by the designer. These values are stored 
in matrix [Q0 ], and consequently matrices [D~] and [D~1 ] are defined 

Two cases can be examined: 

- pre stressed systems: equilibrium equation [D~]. {xz} = -[D~1 ]. {xt} 
- self stressed systems: equilibrium equation [D~]. {xz} = {0} 

Cable nets and membranes Force density method has been developed for 
cable nets and membranes with an analogy depending on cable net modeling 
for membranes. Many examples are described in literature. The first studies 
on tensile membranes were carried out by physical modelling and significant 
results ensued from F. Otto's works (1973) on soap films. However, these 
methods are cumbersome and may not provide sufficient accuracy or restrict 
the variety of possible shapes to minimal area surfaces. Form-finding is to
day performed with computer-aided numerical procedures. We may firstly 
distinguish the mechanical approaches based upon a discrete representation 
of the domain by use of cable networks. This consideration has led to the 
Force Density Method (Linkwitz and Scheck, 1971). We developed a specific 
software called Architectural Membranes Design illustrated below according 
to the different steps of the method 
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Fig. 1. Formfinding with AMD. 
a) initial mesh, b) boundary conditions, c) first shape of Form finding with AMD 

Tensegrity systems Tensegrity systems are systems in a stable equilibrium 
state comprising a discontinuous set of compressed components inside a con
tinuum of tensioned components. It is necessary to emphasise on the fact 
that matrices for these self stressed systems, are always singular, since for 
any column or row, the sum of terms is always equal to zero. 

rank([D~]) = rank([D~]) = rank([D~]) < n (13) 

Consequently equilibrium equations admit an infinity of solutions, since 
all characteristic determinants vanish when the system to be solved is homo
geneous. In case of non specific self stress coefficients, the rank of matrices is 
generally equal ton - 1. Solutions are then parametered by only one redun
dant coordinate, but all the other nodes are confounded with this redundant 
node. In order to have self stressed geometries, which are not restricted to one 
point (or one straight line) , it is necessary to reduce the connection matrix 
rank ton- 2 (respectively n- 3).When this rank is equal ton- 3, solutions 
are parametered by three redundant coordinates. The resulting self stressed 
forms are then planar at best. For planar reticulated systems it is sufficient, 
but for spatial systems it is necessary to further reduce the rank by one. 
When the connection matrix rank is reduced to n- 4, the four redundant 
nodes which parameter the solutions are then sufficient to generate spatial 
reticulated self stressed systems. 

Example We call "triplex" every tensegrity system comprising six nodes, 
three struts and nine cables, such as every node is connected to one strut and 
three cables. In order to find irregular triplexes, we know that it is necessary 
to reduce the rank of the self stress coefficient connection matrix until n - 4. 
Matrices being of dimension 6, the rank will be equal to 2. Required self stress 
coefficients have to be different from zero and to satisfy q0 > 0 for cables and 
q0 < 0 for struts. All self stress coefficient combinations which lead to a rank 
equal or less than two can be taken in account. 

If, for instance, we choose identical coefficients for members pertaining to 
a same set of members, that is: 
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lower triangle cables: (14) 

bracing cables: (15) 

upper triangle cables: (16) 

struts: (17) 

We find after an analytical study (based on Gaussian elimination) that 
the following relationship has to be satisfied in order to reduce the rank to 
two: 

(18) 

Consequently, if q? = q~ = 1, then q0 can be derived: 

(19) 

For every direction, there remain only two independent equilibrium equa
tions. There are then four redundant nodes, which can be located anywhere. 
Some examples are given on the following figures (in plane views) 

Fig. 2. Different triplex resulting from form finding. Plane views 
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3 Surface stress density method 

3.1 Introduction 

The stress distribution in a fabric remains an unknown factor even if refer
ence to tensions in cable are done. Most generally, the question is related to 
the equivalence between a tensile cable net and a pre stressed membrane. 
Developments point out the inacurracy of this equivalence and therefore the 
inadequacy of such approach which may lead to significant mistakes. Thus, 
several methods based on a continuous representation of the fabric with mem
brane surfacic elements has been proposed. We may quote processes using 
the Dynamic Relaxation (Barnes, 1975) or Finite Elements methods under 
large displacement context (Haug and Powell, 1972). They are related to geo
metrically nonlinear analysis and determinate an equilibrated geometry by 
deforming a trial configuration whose boundary conditions are modified ac
cording to designer's specifications. However, several drawbacks may be put 
forward. Both the final shape and stresses in the membrane are difficult to 
control and some areas of the structure may end up in compression. More
over, these techniques require most of time the use of unfriendly softwares 
for the architect and high performances hardwares. 

3.2 The Surface Stress Density Method 

This approach is based upon a continuous representation of the domain 
with triangular membrane surface elements. We note that the mechanical 
requirement of absence of compressive areas may be satisfied if every el
ementary Cauchy stress tensor is isotropic, which implies in its local axis 
(xtm Ym ?m), that {a-O'isoV = (a-0a-00) with a-0 > 0. Therefore, the inter
nal forces exerted by the element at its nodes may be written in the global 
axis of the structure (X V Z) by: 

1 ·m _ -epm m~ ~ 
Ij - -2-a-o {_bj n J (20) 

where epm is the fabric thickness and 'it J a normed vector orthogonal to 
the opposite side of the node. It comes for node 1: 

(21) 

with Sm = !£bl fhl being element area 
,.o 

By considering the ratio qsm = .:...m. as the surface stress density for the 
Sm 

element 
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Fig. 3. Membrane element and equilibrium of node 

(22) 

When mi elements are adjacent to the node i (noted li on Fig. 3), the 
total internal force is then 

(23) 

With {xi}T = (X 1Y1Z 1), the equilibrium position of node li verifies the 
matrix relationship: 

(24) 

This equation is the main feature of the Surface Stress Density Method 
(SSDM)(Maurin and Motro, 1998). It allows to determinate the position of 
every node in an easy way (the most intricate requirement is a 3 x 3 inversion 
matrix) and to modify it by acting on the q81 values. 
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Indeed, [I d3] is the 3 x 3 identity matrix and 

mi 

with q 5 j = Q sj (L qsjf~j) 
j=l 

Combining with the Force Density Method (FDM) The process al
lows the management of reinforcing cables located at the edges or above the 
fabric. If Ci cable elements are connected to node l i, the total internal force 
may be expressed as: 

(25) 
j=l j=l 

Fig. 4. Membrane with cables 

Applications 

Fig. 5. Some examples of SSDM applications for membranes 

When cable elements are located on the edges, their curvature may be 
managed by changing the ratio between surface coefficients Qsj and force 
density coefficients% (Fig.6 a to c). 
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a b c 

Fig. 6. Combination of SSDM and FDM for different values of coefficients 
a) q8 j = 1 and%= 6 b) q8 j = 1 and%= 25 c) q8 j = 1 and% = 100 

4 Conclusion 

Force density methods appear to be very useful as far as form finding processes 
are required for initially stressed systems. We contributed to extend the clas
sical force density method to surface stress density method opening also com
bination possibilities. 
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Abstract. Some simple tensegrity structures are considered, all of which can be 
given an analytical model. Firstly, a qualitative description of a tensegrity system 
as a first-order mechanism is given. Next, for a representative three-dimensional 
structural system, the T3 module [4] in Fig. 1, the condition for the tensegrity 
configuration and the load-displacement relations are derived; remarkably, the dy
namic characterization of the T3 module has general validity. Finally, tower-shaped 
structures obtained by juxtaposition of T3 modules are briefly considered. 

1 Introduction 

Tensegrity systems were first conceived, in 1948, by the artist Kenneth Snel
son and the architect Richard Buckminster Fuller. According to their defini
tion, tensegrity systems are pin-jointed spatial trusses with a large number of 
tension elements (=cables) and a small number of bars, all compressed. Bars 
are never connected to each other, while cables form a connected set (they 
have "tensile-integrity", whence the artifact word tensegrity). Each joint con
nects one bar and, at least, three cables (see Fig. 1). 

B 

Fig. 1. A typical tensegrity, the T3 module. The cable triangles ABC and ABC 
lay in two parallel planes 

Tensegrity are both kinematically and statically indeterminate, i.e. , there 
are mechanisms and self-stress states, but each self-stress state stabilizes and 
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stiffens every mechanism. The indeterminacy condition is related to a condi
tion of minimum or maximum length for one or more elements, the length 
of all other elements being fixed. This fact becomes evident when we try to 
build a tensegrity structure by hand [4]. For a system of n elements, we can 
fix the length of ( n - 1) elements and then realize the physical connection 
between them. The partial assembly has no stiffness. The length of the last 
element is determined when we try to decrease (in case the last element is a 
cable) or increase (in case it is a bar) the distance between the end nodes. 
The ( n - 1) length constraints impose that the distance between the last 
two joints be, respectively, not less or not more than a certain extremum, a 
minimum for a cable or a maximum for a bar. If this extremum is attained, 
the system reaches its tensegrity configuration and becomes stable, but it has 
no stiffness yet: a tensegrity structure becomes stiff only when a prestressed 
element is inserted between the last two joints. 

Tensegrity systems are light-weight structures to be employed as deploy
able or variable-geometry structures. We can fold the system by removing or 
lengthening a few cables; we can pass from a geometry to another, through a 
continuous path of tensegrity configurations, simply by changing the length of 
two or more elements. These features make tensegrity structures good candi
dates to realize smart structures, with some elements acting as sensors or ac
tuators. In addition, tensegrity systems have already been used to cover large 
areas, for example, the roof of the Sun Coast Dome (St. Petersburg, Florida, 
1989); another example is the Georgia Dome (Atlanta, Georgia, 1992). 

2 First-order infinitesimal mechanisms 

The configuration of a tensegrity structure is described by the structural 
matrix, that is, either the equilibrium matrix, whose linear action on the 
external-load vector yields the axial forces in the elements, or its transpose, 
the compatibility matrix, linking the joint displacements to the element defor
mations. The structural matrix of a tensegrity configuration is rank deficient, 
a condition depending only on the system's geometry. 

The simple planar example in Fig. 2 is useful to describe the main tenseg
rity properties. If the three joints are not aligned, then the system is determi
nate, i.e., the structural matrix is square and has full rank. Otherwise, if the 
three joints are aligned, then the rank of the structural matrix decreases by 
one and the system possesses a mechanism and a possible state of self-stress. 
Note that the aligned configuration is the one for which the length of an 
element is minimal if the length of the other is fixed. Systems like this are 
often called first-order infinitesimal mechanisms [8]. From a kinematic point 
of view this means that element deformations E are infinitesimal of the second 
order with respect to joint displacements d: 

(1) 
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Fig. 2. Statics of a first-order mechanism: (a) stiffening under an activating load P; 
(b) piece-wise linear response under a nonactivating load Q (Lt fabrication length, 
Lo length at Q = 0; Lo > Lt) 

The static response depends on the load direction. If the load activates the 
mechanism, then the load-displacement relation is approximate by a cubic 
with the inflection point in the origin (Fig. 2(a)); the tangent at the origin 
gives the initial stiffness, and is proportional to the prestress in the system. 
The load is balanced by the change in direction of elements, without any first
order change in the axial forces. The cubic embodies the geometric stiffening 
effect: the system becomes stiffer as the load increases. If the load does not 
activate the mechanism (Fig. 2(b)), then the response is linear until one of 
the cables becomes slack. 

3 Single-module analysis 

In this section we analyse the T3 module sketched in Fig. 1. Firstly, we 
find the geometrical condition under which the system is in the tensegrity 
configuration. Then we study the static response under two different load 
conditions. Finally, we lay down the equation of motion and briefly discuss 
the general dynamic behaviour. 

The system is composed by nine cables and three bars. Six cables form the 
lower and upper horizontal triangles, ABC and ABC; three bars connect the 
joints A and A, B and .B, B and .B, the last three cables connect the joints 
B and A, C and .B, A and C. An oppositely oriented system is obtained by 
connecting the joints C and A, A and B, B and C by the last three cables. 
In order to deal only with cyclic-symmetric configurations, we restrict atten
tion to structures which are left unchanged by a rotation of 271' /3 about the 
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z 

X 

Fig. 3. The geometric parameters for the T3 module 

axis passing through the centers of the horizontal triangles. Every symmetric 
geometry is determined by four parameters (Fig. 3): the radii a, b of the cir
cles circumscribed to the triangles ABC and ABC; the distance h between 
the planes where the triangles lay; the relative rotation r.p of the two triangles 
about the vertical axis. For a general choice of these parameters the struc
tural matrix has full rank, and the tensegrity configuration is determined by 
finding conditions under which the rank decreases by one. Equivalently, we 
can consider a model with elastic and prestressed cables BA, CB, AC, while 
the remaining elements are inextensible. In this way we obtain the tensegrity 
condition at equilibrium in t he absence of external loads. Since elasticity is 
concentrated, the problem simplifies: in statics, an explicit analytic solution 
can be found; in dynamics, the response is ruled by an ordinary differential 
equation. 

It can be shown that, due to the length constraint on the anelastic ele
ments, the total energy can be written in the form 

(2) 

where .X( r.p) is the common current length of the elastic cables, which have 
stiffness k > 0 and fabrication length .X f (so that .X ( r.p ) > >.f); the minimum 
is found for r.p = 5Jr / 6. In conclusion, the tensegrity condition imposes the 
value of the relative rotation cp, but does not depend on t he value of a, b, or 
h. 



www.manaraa.com

Simple Analytical Models of Tensegrity Structures 355 

3.1 Statics 

To derive the load-displacement relations, it is convenient to count the rota
tion <p from the tensegrity value; therefore, we take the angle e to be such 
that <p = e +57!" /6. With this, we obtain: 

>.(B) = >.(-B) , (3) 

a symmetric expression in e 0 

Let us now consider the couple associated with the relative rotation e, 
which is given by the first derivative of the energy: 

(4) 

a skew-symmetric function of B. The initial modulus is given by: 

(5) 

and depends linearly on the initial prestress k(>.0 - >.1 ). 
The second load condition we consider is a vertical thrust associated with 

the relative change in distance between triangles. This relation is given in 
parametric form: 

{ 
F(B) = 6V3k (1- ~) h(B) sinO 

>.(B) v'3sin8- cos B) 

15(8) = h(B)- ho. 

(6) 

The initial modulus is: 

(7) 

again linear in the prestress. 

3.2 Dynamics 

The dynamic response is characterized by a low-frequency mode, due to the 
small stiffness of the structure for any force activating the mechanism. Be
cause of geometric stiffening, the frequency depends on the oscillation ampli
tude, decreasing if the amplitude decreases, until it reaches a minimum value 
corresponding to the initial stiffness. 

We suppose that a mass is placed in each of the upper joints, while lower 
joints are fixed to the ground; furthermore, we assume that the dissipation is 
quadratic in 5., the rate of change in length of vertical cables. The equation 
of motion, a highly nonlinear second-order equation, has the following form: 

(8) 
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where (/1I jj + 112 02) is the inertial couple, ry B the damping couple, and Cr3 

the elastic couple. Small vibrations are not damped, because the damping 
coefficient ry is essentially quadratic in e, and hence negligeable. To have 
marked damping effects, one should envisage dissipation as depending on the 
relative rotation between elements. 

4 Serial modules 

In this section we consider the complex of two superposed T3 modules shown 
in Fig. 4(a). The three cables forming the lower triangle of the upper module 
are removed, while the lower joints of the upper module are connected to 
the middle points of the upper cables of the lower module (so that each of 
those cables is effectively split into two distinct elements). The two modules 
are oppositely oriented. This complex has in general six internal mechanisms, 
but in the tensegrity configuration it has one more mechanism and one state 
of self-stress. The geometric parameters necessary to determine every cyclic-

(a) (b) (c) 

Fig. 4. Superposition of two T3 modules: (a) generic symmetric configuration; (b) 
geometric parameters; (c) t ensegrity configuration 

symmetric configuration are (Fig. 4(b)): the radius a of the circle circum
scribed to each of the two base triangles; the radii ri , r 2 of the circumscribed 
circles of the two middle triangles; the heights hi, h2 of the modules; the 
two relative rotations 'PI, cp2 ; the overlap f1h , that is, the distance between 
the planes where the middle triangles lay. The lengths of all elements are 
fixed except for the elastic cables; therefore, a possible choice for the set of 
independent variables is: r i , 'PI , r 2 , cp2 , f1h . This set reduce tor, cp, f1h if we 
consider a center of symmetry such that ri = r 2 = r and 'PI = 'P2 = 'P· The 
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length of the elastic cables, and hence the elastic energy, is a function of r and 
rp only. We also have a constraint G(r, LJ.h) = 0, reflecting the fact that the 
lengths of the new elements are fixed. Consequently, the tensegrity configu
ration is found by minimizing the energy U(r, rp) subject to this constraint. 
The solution is: 

5 
1n = -7r r = l LJ.h = 0, 
r 6 ' ' (9) 

where l denotes the common length of the middle cables. In the tensegrity 
configuration, the six new middle cables form a planar hexagon (Fig. 4( c)); 
we see that the identity of the T3 module is preserved. 

The only load condition we consider is when two equal and opposite end 
couples induce the relative rotation e of the two base triangles. We find that 

C(B) = CT3 (~) , (10) 

where the mapping Cr3 for the single-module case is given by ( 4). 

5 Two-level Snelson tower 

In this section we describe the simplest version of a tensegrity tower of the 
type constructed by Snelson. This assembly is obtained by adding six more 
cables to the previous system; each of these cables connects a base-triangle 
joint (that is, the end node of a bar belonging to one module) to a mid
dle joint (that is, the end node of a bar belonging to the other module). 
With reference to Fig. 5, the connected joints are: A1 and B2 , B 1 and C2 , 

Cr and A2; Ar and C2, Br and A2, Cr and B2. With the additional cables 
the tensegrity system has a single mechanism, stabilized by the self-stress 
state. This system is more difficult to study because of the interdependency 
of modules due to the new cables. We choose a different approach, and search 
for conditions under which the structural matrix is rank deficient. In view of 
the existing symmetry, both cyclic and central, it is sufficient to consider the 
equilibrium of two joints only: the end-base joint and the middle joint. We 
write the equilibrium equations projected onto the normal, tangent and ver
tical directions of a cylindrical reference system. This leads to a square linear 
system, whose matrix must have null determinant in the tensegrity configu
ration. This condition is satisfied if the geometric parameters are linked by 
the relation: 

!!_ = - 1- (~~+sine+ 
LJ.h 2 sine 2 r 

-- + 3- sine - 3 sm e 1 a 2 a . 2 ) 

4 r 2 r ' 
(11) 

a condition involving all the geometric parameters describing the structure. 
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Fig. 5. Two level Snelson tower 
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Abstract. This paper deals with the dynamic stability of long-span bridges un
der non-stationary aerodynamic loads. Some generalizations of classical models are 
presented in order to check the critical conditions both in the case of flutter and di
vergence for long-span bridges with particular reference to the cable-stayed scheme. 
Furthermore, a numerical model based on a finite volume formulation of the flow 
problem around the girder cross-section is developed, able to simulate the steady 
and non-steady wind load conditions on the bridge. Good agreement with wind 
tunnel test results is found for the Normandy Bridge design cross-section models. 

1 Introduction 

The modern bridges aerodynamic design started with the investigations on 
the aeroelastic instability phenomenon that led to the collapse the first Tacoma 
Narrows Bridge. 

Owing to their high flexibility, long-span bridges are in fact often found to 
be very sensitive to wind effects and their major wind-related problems are 
associated with deflections produced by oscillatory instabilities or by response 
due to the random action of wind gusts. 

Undesirable moderately large vibratory motions may occur at lower wind 
velocities, due to the vortex shedding in the bridge's wake. Moreover, at much 
higher wind velocities, truly unstable divergent self-excited oscillations can 
occur. These oscillations are termed flutter. Finally, the forces engendered by 
gusting at very high speeds can lead to random buffeting oscillations that are 
of considerable concern in modern flexible bridges. 

The wind-induced deflections lead to non-stationary interactive wind
structure ( aeroelastic) effects. In other words, while the structure deflects 
under wind load, a deflection induces possibly positive feed-back that leads 
to a modification of the acting load, truly dependent on the girder's cross
section shape. 

Furthermore, even if the bridge does not oscillate in the approaching flow, 
the divergence instability may occur as a consequence of the wind-induced 
eulerian stiffness singularity for the global wind-structure system. 
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The bridge aerodynamic analysis and design is traditionally based on 
experimental wind tunnel tests. However, their cost and realization time may 
be very large and hence, prohibitive for parametric studies. 

Starting from the dynamic modelling aspects of long-span bridges, with 
particular reference to cable-stayed ones, this paper presents a numerical tool 
useful to evaluate the static and dynamic wind loads acting on a bridge deck 
and able to allow an easier acquisition of the aerodynamic data needed in 
bridge design. 

2 Bridge decks under cross wind: stability concerns 

In general, in proximity of a bridge site the stationary wind flow runs parallel 
to the sea or to a river surface. On the other hand, the wind velocity compo
nent normal to the bridge span gives rise to the largest effects and therefore 
in the analysis the wind stream may be considered transversally acting on 
the bridge. 

As confirmed by the section model experimental technique, due to the 
large span-length/girder-width ratio of most bridges, the flow across the 
girder may be considered, in first approximation, two-dimensional. Then, 
the wind load analysis can be performed on a characteristic undeformable 
cross-section orthogonal to the span. Lift (L), drag (D) and twisting moment 
( M) represent the unit aerodynamic loads on the section and they are defined 
as: 

(1) 

where CL, Cv, CM are dimensionless coefficients, B is the cross-section width, 
p the air density, Ua the stationary cross-wind velocity. These forces can be 
equivalently introduced either in wind axes reference or in profile axes one. 

Since the bridge cross-section profiles have generally bluff- body geometry, 
the unit actions in Eqs. (1) are time-varying about the steady value due to 
signature effects (local turbulence) ascribable to local flow separation, reat
tachment, etc. close the structure. Furthermore, the previous dimensionless 
coefficients are also dependent on the angle of incidence of the approaching 
flow. 

As it is known, when a deck structure is moving in the wind flow, interac
tive or aeroelastic forces are generated. If the quasi-steady theory is assumed 
to be valid, i.e. if the non-linear problem in its incipient small-motion stage is 
considered, the unit aeroelastic wind loads acting on the bridge cross-section, 
when oscillating in wind flow, are completely described by the classical Scan-
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Ian formulation [1-4]: 

D (z t) = ~pU 2BK [P* u(z, t) + P.* BB(z, t) + K P*B(z t) 
ae ' 2 o 1 Uo 2 Uo 3 ' 

K P* u(z, t) P.* v(z, t) K P.* v(z, t)] 
+ 4 B + 5 Uo + 6 B (2) 

L (z t) = ~pU2BK [H*v(z,t) +H*BB(z,t) +KH*B(z t) 
ae ' 2 o 1 Uo 2 Uo 3 ' 

KH*v(z,t) H*u(z,t) KH*u(z ,t)] 
+ 4 B + 5 Uo + 6 B (3) 

M (z t) = ~pU2B2K [A*v(z ,t) +A*BB(z,t) +KA*B( t) 
ae ' 2 o 1 Uo 2 Uo 3 z, 

KA*v(z ,t) A*u(z ,t) KA*u(z, t)] 
+ 4 B + 5 Uo + 6 B (4) 

where u, v and () are the cross-section in-plane displacement components 
evaluated from the static bridge equilibrium configuration (Fig. 1); w is the 
circular frequency of girder oscillation; K = Bw/ Uo is the reduced frequency; 
Pt, Ht , A; (i = 1, ... , 6) are the dimensionless aerodynamic (or flutter) 
derivatives, introduced by Scanlan [1] as functions of K and depending on the 
cross-section geometry as well as on the static torsional rotation ()o = ()0 (z): 

Ht = Ht(K,eo(z)) , (5) 

being z the spanwise co-ordinate. 
As a matter of fact, if the steady aerodynamic twisting moment is not 

vanishing at zero angle of attack, or if an eccentric live load condition is act
ing on the structure, static torsional rotation along the bridge span length 
is produced. This occurrence can change of a large amount the non-steady 
aerodynamic loads also under small steady torsional rotations. As a conse
quence, relevant effects in bridge stability response may be produced. Hence, 

Fig. 1. Deck section displacements and aeroelastic forces: notations. 
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in these cases, the knowledge of the aerodynamic derivatives as functions of 
the static torsional rotation along the bridge span length may be essential 
for the design and for a more accurate analysis of the dynamical behaviour 
of long-span bridges under wind loads. 

If the generalized compatible displacement vector at the time t for the 
section at the z co-ordinate is indicated as s(z, t) = [u(z, t), v(z, t), (}(z, t)]T , 
the functional relation between s(z, t) and the distributed generalized forces 
can be symbolically expressed by the equilibrium equation: 

(6) 

where S is a structural operator and QA, Q 1 and QD are the generalized 
aerodynamic, inertial, and external disturbance forces, respectively. The dis
turbance force QD is usually assumed to be given, whereas the aerodynamic 
and inertial forces depend in some manner on the displacement and motion of 
the system. If a quasi-steady aerodynamic loading is assumed, the operator 
equation of the aeroelastic problem may be written as: 

A(s,s) +I(s) + QD = S(s) (7) 

where A and I are an aerodynamic and inertial operator, respectively. 
As indicated in [4] and applied in [5-7], assuming the bridge moving in a 

linearly elastic way from the static configuration, the full three-dimensional 
wind-induced bridge response can be regarded as a superposition of an ade
quate number N of natural vibration modes. Consequently, the section dis
placements can be written as: 

where Uj, Vj, (}j are the dimensionless spanwise modal (shape) forms and ~j 
is the jth generalized modal co-ordinate. 

Then, the motion equations equivalent to the Eq. (7) can be obtained 
through an energy approach considering for each mode the corresponding 
Lagrange's equation of motion. Hence, disregarding the disturbance force and 
taking into account the mutual orthogonality with respect to mass weighting 
of the bridge natural modes, the motion equation of the jth mode results [4]: 

Ij[~j + 2(jWj~j + wJ~j] = J [LvjB + DujB + M(}j]dz (9) 
span 
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where 11, (1, w1 are the generalized mass inertia, the damping ratio and the 
natural circular frequency of mode j, respectively. Furthermore, if the vortex
shedding effects and buffeting-aeroelastic interactive ones are disregarded and 
if the structural reference configuration is assumed to be coincident with the 
bridge aerostatic configuration under the action of aerostatic stationary wind 
loads, the unit wind actions L, D and M may be completely described by 
the amount of aeroelastic and buffeting effects. 

Since the Eqs. (2-4) hold for sinusoidal motion [1], it can be observed 
that the bridge motion equation in the frequency domain can be obtained by 
assuming time complex harmonic motion for the jth mode, i.e. ~j = ~1 eiwt, 
where i is the imaginary unit, w the real circular frequency and ~j the complex 
amplitude of the motion. Moreover, it can be proved that the buffeting exci
tation terms play a negligible role in stability concerns [4]. Hence, assuming 
a constant girder cross-section along the bridge span and taking into account 
the flutter derivatives variability with the z co-ordinate, the jth equation of 
motion can be written as: 

[ 2 2]-K + 2i(1KK1 + K1 ~1 

( pB4 K 2£) ~c [("H* H*) ("H* H*) 
= 2/j ~ '>n Z 1 + 4 VnVj + Z 2 + 3 (}nVj 

+ (iH; + H;)unvj + (iAr + A:)vnej + (iA; + A;)enej 

+ (iA; + A~)u e + (iPt + Pt)u u + (iP; + P;)8 u 
nJ nJ nJ 

+ (iP; + P;)VnUj] 

(10) 

where £is the bridge span length, (Q)rnqj = J Q(z)rn(z)qj(z)dzj£ with 
span 

rj,qj = Uj,Vj or ej and Kj = Bwj/Uo. 
From the Eq. (10), the divergence condition for the jth mode is obtained 

by imposing the balance between the aerodynamic stiffness and the structural 
one, when circular frequency w of girder oscillation approaching zero. As a 
consequence the corresponding critical wind condition results: 

(11) 

On the other hand, the single-mode flutter instability criterion is derived 
by imposing the damping unbalance condition for the jth mode: 
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(12) 

where, for an incipient flutter, the ratio between the natural reduced fre
quency and the flutter one Kc results from: 

From knowledge of the modal forms, the mechanical properties and the 
flutter derivatives as functions of K and of the static torsional rotation, the 
stability tendency of any structural mode and the corresponding critical flut
ter wind speed, i.e. the wind velocity corresponding to self-sustained har
monic oscillations, can be evaluated through the criterion (12). 

The single-mode approach is enough to evaluate the critical flutter condi
tion for typical bluff-body bridge decks, because the energy transferred from 
the flow comes mainly into a single mode instead of being spread into more 
than one. However, when the bridge cross-section is properly designed in an 
aerodynamic sense, the occurrence of one-degree-of-freedom flutter can be 
often excluded, even if flutter with two degree-of-freedom or more can arise. 

Writing the Eq. (9) for each value of j to be considered, the multi-mode 
flutter condition may be investigated. In detail, the following homogeneous 
problem results in the frequency domain: 

(14) 

(15) 

where (jjn represents the Kronecker symbol and 

Ajn(K) = 2(jKj(jjn- p~~KC [(H{)vnVj + (H~)&,vj + (H;)u,v1 (16) 
J 

+ (Ai)v,11j + (A2)on11J + (A~)un11J + (Pt)unuJ + (PnonuJ + (P;)vnuJ 
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Bjn(K) = Kjr5jn- pB;:2f [(H3)envj + (H;}vnVj + (H~)unVj (17) 
J 

+ (A;)e,.ej + (A:)vnej + (A6)un0j + (P;)enuj + (P;)unUj + (P6) vnuJ · 

The existence of steady-state oscillations with amplitude e is possible 
only if both the real and imaginary parts of the determinant of lE vanish. 
Two real equations in K and w are so obtained, whose solution, if it exists, 
leads to evaluate the critical wind speed Uoc = B wc/ Kc, where We denotes 
the circular frequency of the critical flutter mode, to which several natural 
modes contribute, possibly out of phase but synchronized one another due to 
aeroelastic forces. The flutter mode e corresponds to the eigenvector of the 
problem (14) with K = Kc and w =We· 

The problem, completely analogous in its general form to the classic air
craft flutter problem, has received a variety of treatments. In what follows, 
with reference to cable-stayed bridges, it is presented a simple approach to 
analyze the two degree-of-freedom flutter conditions. 

3 Aerodynamic instabilities of long-span cable-stayed 
bridges 

A fan-shaped scheme for cable-stayed bridges is considered (Fig. 2). Its phys
ical behaviour is very similar to a large truss structure where the main state 
of stress is given by axial forces in the stays and in the girder, while girder's 
bending and torsion are of a local nature. A beam-like girder is assumed hung 
to the tops of two towers by means of two stay curtains and girder's ends are 
simply supported, without longitudinal constraints. H-shaped or A-shaped 
piles (Fig. 3) are commonly used. With reference to the usual erection proce
dures the girder is also assumed free from bending moments under dead load 
g. Moreover, girder cross-section is assumed constant along the span length 
and the bridge is symmetric with respect to both the axial vertical plane and 
the mid-span cross-plane. 

In modern long-span cable-stayed bridges, stays spacing Ll is very small 
compared to central span length L c, and therefore a continuous stays distri-

y y 

Fig. 2. Fan-shaped cable-stayed bridge scheme: notat ions. 
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Fig. 3. H- and A-shaped tower 
schemes. 

Fig. 4. Displacement parameters. 

bution along the deck may be reasonably taken to describe the stays-girder 
interaction. Hence, the continuous model proposed in [8- 12] can be used to 
characterize the non-linear dynamics of the structure. Neglecting the towers 
and girder's axial extensions, the Euler-Bernoulli bending theory and the De 
Saint Venant torsion theory are applied to describe the constitutive behav
iour of the girder. Assuming a two-degrees of freedom model for the in-plane 
cross-section motion, the bridge deformation can be described by means of 
the following displacement parameters (Fig. 4): the girder vertical deflection 
v(z, t); the girder torsional rotation B(z, t); the girder longitudinal displace
ment w(t); the z-directed displacements LlL(t) , LlR(t) and the torsional ro
tations around the vertical axis If! L ( t), If! s ( t) of the towers tops (these latter 
rotations disappear in the case of A-shaped towers [8]). 

As it is known, the behaviour of cable-stayed bridges is non-linear due to 
the intrinsic non-linearities of the stays. The non-linear elastic response of 
a stay is modelized through the usual Dischinger's theory [8]. Therefore the 
non-linear constitutive equation Llo- = E * Llc is assumed to hold, where the 
fictitious elasticity modulus E* can be written through the tangent theory 
( E;) or the secant theory ( E;): 

E*=E 1 + "fcloE [ 
2 2 ] - 1 

t 120"~ 
E* = E 1 + '"YJ ,E 1 +_ /3 [ 

22 -l -1 

s 12o-~ 2/32 
(18) 

In the Eqs. (18) E is the Young modulus, "fc the specific weight, lo the 
horizontal projection length of the stay and j3 denotes the ratio between the 
final value of the stay's tension and the initial one o-0 • 

As far as the dynamic equilibrium is concerned, the bridge aerostatic con
figuration under the action of aerostatic stationary wind loads is considered 
practically coincident to the bridge configuration under the action of the ver
tical dead loads. Moreover, it is assumed that the non-stationary oscillations 
will occur in a small neighbourhood of the initial configuration. As shown in 
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[10], considering H-shaped towers, for the case of a symmetrical motion with 
respect to mid-span, the dynamic equilibrium equations under wind load can 
be written in dimensionless form as: 

~4 84 ~~:, t) + .P(()V((, t)- (.P(()U(t) + MV((, t) = ~~ Lae((, t) (19) 

-(fJ + x)U(t) + 1 (.P(()V((, t)d( = 0 (20) 

2 820((,t) , .. HtJ9 
T 8( 2 -.P(()O+(<P(()lP(t) -f0 0((,t) =- Egb2 Mae((,t) (21) 

-(fJ + x)lP(t) + 1 (<P(()O((, t)d( = o (22) 

being w = 0, U = L1L/H = -L1R/H, 1[/ = 1[/L = -1[/R· 
The following dimensionless quantities are involved in Eqs. (19-22) [10]: 

v 
V= H' 

f} = r cos2 a(() d~" 
} L 1 + a(2 .., + Xo, 

M = {LHiJg 
Eg ' 

(23) 

(25) 

where {Lis the girder's mass per unit length, I, 10 , Ct are the flexural inertia, 
the polar mass moment of inertia and the torsional stiffness factor of girder 
cross-section, respectively. Moreover, IJg is the stress produced in the stays by 
dead load, kT is the tower flexural stiffness, a 0 is the slope of anchor stays, 
whose stress, fictitious tangent Dischinger's modulus and cross-section area 
are IJ9 o, EZ and A 0 , respectively. 

Due to the motion symmetry hypothesis, Eqs. (19) and (21) describe the 
flexural and torsional equilibrium of the girder, while Eqs. (20) and (22) give 
the translational and rotational equilibrium of the left (L) tower's top. 

In practical cases the parameters E and T are small (E .::; 0.3, T .::; 0.1). 
This fact allows using a truss assumption, that is disregarding terms in E and 
in T with respect to the others in the equilibrium equations. By using this 
assumption and Eqs. (3-4), the Eqs. (19) and (21) may be written as: 
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+<PV- (<PU = -MV + Q [HHtV + BH~iJ + KUaHiB + KHUaH; ~] 
(26) 

, .. HB [ . . * * v] -<PO+ (<PIP = ! 0 0 - Qb2 H A~V + BA;e + KUaA3() + K HUaA4 B 

(27) 

where Q = pU0 KBa9 /(2Eg). 
In order to characterize the torsional divergence and the one degree-of

freedom torsional flutter conditions, it is assumed a zero degree of freedom 
v. As a consequence, Eqs. (27) and (22) represent the significant motion 
equations. Assuming time complex harmonic rotational motion for the girder 
and for the towers top with the same frequency, i.e. 0((, t) = B(()eiwt , 
'lj;(t) = "ifeiwt, and solving the Eq. (27) into the Eq. (22) with the simplified 
framework of the truss assumption [11], the following motion equation in the 
frequency domain is obtained: 

(28) 

where A; (K) = JL A;((, K)(2d(jv represents the ith generalized flutter 
derivatives, v = JL (2d( and wo is the torsional free oscillation circular fre
quency in still air of the bridge, already given in [9]: w~ = (x + Xo)/(vi0 ). 

In this way, the torsional divergence condition is obtained similarly to the 
Eq. (11), by imposing that the aerodynamic stiffness balances the structural 
one when circular frequency w approaching zero: 

(29) 

being f3 = e.Jt.. and "' = Y1
82 the dimensionless flexural and torsional inertial 

J.L 0 

parameters of the bridge, respectively. 
Furthermore, the one degree-of-freedom torsional flutter critical condi

tions are obtained imposing that the global damping vanish, i.e. A; = 0. As 
a consequence, the critical value of the reduced frequency Koc is obtained. 
By using the Eq. (28), the correspondent critical circular frequency of motion 

[ ] 
-1/2 

results: Woe= wo 1 + ~"YA;(Koc) . 
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Analogously, assuming a zero degree-of-freedom() the flexural flutter crit
ical conditions may be obtained. In detail, imposing that the global damp
ing vanish, i.e. H~ = 0, the critical reduced frequency Kvc may be char
acterized. Hence, the critical circular frequency of motion results: Wvc = 

[ ] 
-1/2 

Wv 1 + ~ H: (Kvc) , where Wv denotes the flexural free oscillation cir-

cular frequency in still air [12]: w~ =(X+ Xo)/(vM). 
The two degree-of-freedom flutter instability conditions and the corre

sponding critical wind speed value can be obtained by putting the stationary 
solution of the Eqs. (20), (22), (26),(27) in the form: 

V((, t) = V(()eiwt, U(t) = Ueiwt' ()((, t) = B(()eiwt, l]t(t) = !ffeiwt 
(30) 

where w is the flutter circular frequency. Introducing in Eqs. (20) and (22) 
the values of V and B obtained from Eqs. (26) and (27), a linear homogeneous 
system in the unknowns U and Iff is derived. Imposing equal to zero the de
terminant of this system, after some algebra and in the simplified framework 
of the truss assumption [12], the following frequency equation yields: 

D 4 - D 2 [(1 + <p2 ) + ~2 1'D2 (H~A;- H;A~)- ~f'Sl2A;- ~D2H:] 

[ 2 (3 2-* !32 4 -·-· -·-· (3 2-*] + <p (1- 2D H4) + 4~'D (H4A3- H3A4)- 2~'D A3 

+i~ { D3 [ D(H~ + f'A;)] - D [ ~f'Sl3 (H;A~ - H~ A; + H;A: - H:A;) 

+.fl(!'A;+<p2H~)]}=o (31) 

where D = J;L and <p = ~ are the dimensionless parameters of the oscillating 
Wv Wv 

motion. 
The imaginary part of Eq. (31) leads to the significant root: 

2-* -* 
.n2 = <p H 1 + I'A2 

(H~ +I' A;)+ ~f'(H~ A; - H;A~ + H:A; - H;A:) 
(32) 

or in equivalent way 

(33) 
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Substitution of Eq. (33) into the real part of Eq. (31) gives the equation 
in rP from which its critical value can be obtained: 

being S 1 = H;A~- H~A; + H;A:; S2 = -S1 + H:A; and S3 = H~A:
H:A~ + H;A;. 

In this way, the correspondent critical wind speed value can be easily 
obtained for a two degree-of-freedom flutter. 

It can be observed that, disregarding the terms in {32 , taking A4 = H4 = 

0 and assuming the aerodynamic derivatives independent from the static 
torsional rotation, i.e. constant along the bridge span length, Eq. (31) reduces 
to the simplified frequency condition given in [10]. 

4 Numerical model for wind loads simulation 

It is worth to observe that the analytical approach shown in section 2 and, 
for the particular cable-stayed scheme in section 3, enables the designer to 
evaluate the critical values of wind speed on the basis of a deep engineering 
understanding of the bridge's overall behaviour. The mechanical parameters 
governing the physical behaviour are put in evidence and therefore design 
concepts and procedures can follow. But the simple analytical criteria ex
pressed by the algebraic equations stated above need, for an effective appli
cation, a computation of the flutter derivatives and this point motivates the 
development of a numerical tool. 

In what follows, in order to evaluate the steady and non-steady wind 
loads on a bridge cross-section, it is proposed a numerical model employing 
an arbitrary Lagrangian Eulerian (A.L.E.) formulation of the flow problem. 
In other words, an arbitrary reference domain is introduced as a third domain 
additionally to the commonly used material and spatial domains [13]. 

The kinematics of a compressible, viscous fluid flow, with fluid's constitu
tive law of an ideal Newtonian gas in a fluid domain flt about a rigid body 
flb, is governed by the mass, momentum and energy balance equations. In 
A.L.E. formulation they are written as: 

(35) 
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(36) 

a(pe) a(pe) aui R aui a aT . 
--£:> + Ci -£:>- + (pe + p) n- = sij ~ - n- (An-) + pEm [l f 

ut UXi UXi UXj UXi UXi 
(37) 

where Xi are the spatial co-ordinates, p is the fluid pressure, T is the fluid 
temperature, A is the air's thermal conductivity, e is the specific internal 

S _ 5R 5T _ (au Z:!:.i) 2 !l.:!!J,. > · h N · · energy, ij - ij + ij - f..L ~ + axi - 31-L axk Uij IS t e ewtoman v1scous 

stress tensor with Stokes hypothesis, f..L = f..LR + f..LT is the total (laminar and 
turbulent) fluid viscosity and ci is the A.L.E. convection velocity vector, 
given as difference between the material velocity ui and the reference domain 
velocity. It can be observed that if the reference domain is assumed to be 
coincident with the computational grid it appears evident the possibility to 
treat the body movement into the fluid domain. 

The whole set of equations is defined on the time interval (0, t*) and on 
the bounded domain fl f with boundary afl f, split into its complementary 
subsets T and Tw (Fig. 5). The former, T = TuUTs, is the external boundary 
subset split into the Dirichlet boundary Tu and Neumann boundary T8 • The 
latter, Tw, is the fluid-structure interface. The boundary and initial conditions 
for Eqs. (35-37) are imposed according to: 

Ui = U 0 i in Tf for t = 0; on TwX (0, t*); (39) 

where ni is the outward unit normal vector forTs and Ubi is the rigid velocity 
of flb. 

Furthermore, energy dissipation due to turbulence effects is represented 
through a two-equation k-E RNG (Renormalization Group) model. In detail, 
turbulent kinetic energy k and its dissipation rate E are governed by the 
following A.L.E. partial differential equations: 

in flJ 

(40) 
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where closure coefficients and relative conditions are reported in [14-16]. 
In the simplified framework of a two-dimensional like approaching wind 

flow, the discretization of the whole set of equations is based on a two
dimensional transient finite volume approach and a weak form of the gov
erning equations is [14]: 

J 0:: dV + J [F(W)- N(W)]· ndS = 0 ( 42) 

V(t) S(t) 

where W (p, pu, pe, pk, pE)T is the conserved quantities numerical vec
tor, F and N are the advection and diffusion operator, respectively, V(t) is 
the control (two-dimensional) volume, S(t) its boundary (one-dimensional) 
surface with outward unit normal vector n. 

The transient solution is marched out in a sequence of finite time in
crements. The calculation for each time step is divided into two phases. A 
material phase is performed first, in which the mesh moves with the fluid 
particles. In this phase the changes in velocity and other thermodynamic 
quantities due to the diffusion effects are calculated. In the second phase, 
the advection phase, transport of mass, internal energy, momentum and tur
bulent quantities across cell boundaries are computed. This may be thought 
as re-mapping the displaced mesh at material phase back to its original or 
arbitrary position. In other words, the positions of the fluid nodes may be ar
bitrarily specified functions of time, thereby allowing a Lagrangian, Eulerian 
or mixed description. 

Let fh = u1 Q 1 a discretization of f? f through quadrangular volumes with 
a structured topological scheme and let f?h = UiCi an additional partition of 
f2 f by node-centred cells obtained as represented in Fig. 6. 

Spatial discretization of the governing equations is obtained by a second 
order approximation and it is performed by integrating the differential terms 
over the volumes of the cells Q 1 or Ci. Volume integrals of gradient or di
vergence terms are converted into surface area integrals using the divergence 
theorem. In this way, reducing the derivation order, the velocity field and 
the thermodynamic quantities may be approximated by piecewise constant 
functions on the integration domain. In detail, the transient solution at dis
crete time tn for the velocity field is approximated with uniform functions 

n r r----- ____ J __________ _ _ 

I I 
I n I 
I r W ( : 

r": ~ :r 
I ~ Is : nh I 

I f 1 11 
~ ---------~-------------~ 

Fig. 5. Computationa l domain . Fig. 6. Control volume definition. 
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on each C; cell. Moreover, the other thermodynamic quantities fields are ap
proximated by uniform functions on the Qj quadrangular volumes. That is, 
the weak form of the conservation conditions corresponding to the Eq. (36) 
is formulated assuming the C; cells as control volumes. On the other hand, 
Qj cells represent the integration volumes for the other conservation laws. 

The volume integrals of time derivatives are related to the derivatives 
of the integrals by means of Reynolds' transport theorem. A first order ap
proximation is used for time derivatives, with an implicit temporal difference 
scheme. In detail, implicit differencing is used for all the diffusion and pres
sure terms during the material phase. The coupled equations are solved by 
an implicit method, with individual equations being solved by the conjugate 
residual method [17]. 

The convective transport associated with the mesh moving is accom
plished in a sub-cycled explicit calculation using a sub-cycle time step, that 
is a sub-multiple of the main computational time step Llt. In this way only 
the sub-cycle time step is restricted by the well known Courant stability con
dition of explicit methods, whereas the main time step is forced to respect 
accuracy conditions which arises by imposing a first order approximation in 
time and limiting the amount of cell distortion that occur due to mesh motion 
in the material phase. 

Hence, advection terms are evaluated by a quasi-second order upwind 
(QSOU) scheme, based on the assumption that the fluxes in each co-ordinate 
direction depend only on gradients in that co-ordinate direction. 

In detail, if FJ represents the generic thermodynamic quantity to be con
vected (or momentum term) defined on the jth Q-type (or C-type) control 
volume and v is the convective sub-cycle number relative to the time level n, 
the cell-centered derivatives on jth Q-type (or C-type) cell ofF with respect 
to distance s along the ith co-ordinate direction is evaluated as: 

- = sgn L.l j mm ILlx1l' ILlx1-1l f)Flv { (AFv) . (ILlFJI ILlFJ-d) 
as j 0 

if LlFJ .1FJ_ 1 > 0 

if LlFJ .1FJ_ 1 < 0 
(43) 

where LlFJ = FJ+ 1 - FJ and Llxj = Xj+ 1 - Xj, being Xj the cell-centered 
locations for the jth Q-type (or C-type) cell, evaluated using the updated 
vertex spatial locations. The indices (j + 1) and (j- 1) indicate the computa
tional cells adjacent to jth Q-type (or C-type) cell along the ith topological 
direction. 

It can be proved that the QSOU scheme is strongly monotone and thus 
it does not introduce numerical oscillations in the computed solution, i.e. it 
does not produce undershoots nor overshoots of many higher order schemes 
[17]. 

Dirichlet boundary condition is imposed by pseudo-infinite control vol
umes on ru so that the prescribed velocity is imposed at a great distance 
from the structural domain fh. In particular, the velocity condition on the 
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inflow mesh boundary is evaluated by considering the approximated one
dimensional momentum conservation equation expressed in spatial form, in 
which dissipation terms and compressibility effects are disregarded: 

au+ a(u2 ) + ~ ap = 0. 
at ax pax (44) 

With reference to Fig. 7, Eq. (44) is integrated over inlet node-centred 
control volumes and discretized imposing the free-field velocity U0 and the 
atmospheric pressure at a distance d from the inlet mesh boundary greater 
than 5div lOJx. An explicit approach is used and the advection terms are 
evaluated by a first-order full upwind scheme. 

Furthermore, Neumann condition is performed by the imposition of a zero 
traction gradient on T8 , i.e. by imposing a continuative outflow condition. 
In other words, the viscous stresses S ij inside the outflow boundary cells are 
computed and these are iteratively imposed as traction outside the outflow 
boundary. Moreover, for each outlet boundary control volume the external 
pressure pjut acting on the Neumann boundary part of the jth cell is obtained 
by a linear interpolation, taking into account the computed boundary cell 
pressure value Pj and the atmospheric pressure Patm at a distance datm much 
greater than the characteristic cell dimension Jx, so that it results apj an;::: 0 
and 

out Jxpatm + 2datmPj 
P· = 

J Jx + 2datm 
( 45) 

In this way, the oscillatory wake downstream fh is not numerically re
flected from the external boundaries, as shown in [14]. 

Finally, turbulent law-of-the-wall conditions are adopted on Tw in order 
to simulate the boundary layer turbulent effects. In detail, the wall stress 
Tw = u* 2 pw is evaluated by matching to a logarithmic profile, depending on 
the near-wall flow velocity field , and the flow momentum equilibrium about 
Tw is imposed as a function of the local Reynolds number with respect to its 
critical value R ec [14- 16]: 

Fig. 7. Pseudo-infinite control volume on the Dirichlet boundary. 
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where"" is the well known Karman constant, related to the turbulence model's 
closure coefficients [16]. 

The mesh moving, which enables to consider the arbitrary structural do
main movement, is performed with an algorithm able to preserve the con
vexity of the cells. This condition is necessary in order to ensure a suitable 
computational accuracy. In detail, the arbitrary displacement conditions on 
the structure are prescribed as rigid movements of the fluid nodes core close 
fh, whereas for external fluid nodes a linear decaying law propagates the 
structural displacement. In this way no topological modification of the grid 
is requested and it is easy to preserve a fine mesh close nb [14] (Fig. 8). 

To obtain the time-traces of aerodynamic forces acting on Db the pressure 
distribution and the wall viscous stresses are integrated on the boundary r w 

for each time step. Moreover, the numerical extraction of the non-stationary 
aeroelastic actions may be performed by the following considerations. 

If drag aeroelastic contribution is disregarded and if a two degree-of
freedom model for the in-plane cross-section motion is assumed, only Lae' 
Mae and eight flutter derivatives (H;, A;, i = 1, . . . , 4) are involved in Eqs. 
(2-4). In the spirit of the quasi-steady theory, the displacement functions 
are assumed to be harmonic in time, i. e. v = veiwt and e = 7Je iwt ( i is the 
imaginary unit). Consequently, the aeroelastic forces themselves can be con
sidered harmonic with circular frequency w, but with a phase difference rp 
in comparison with the motion. With these hypotheses and considering the 
flutter derivatives constant along the bridge span length, the following set of 
equations can be written [15]: 

C B i(j:>{v) C B icp(v) Lo e L 
= iH~ + H1 

Mo e M 
= iAi +A~ (47) 

K 2v K 2v 
. -{9) c ·-{9) 

CLoet'PL 
= iH~ + H; 

M oet'PM 
= iA2 + A3 (48) 

K2() K2() 

Fig. 8. Example of rotational mesh moving. 
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318 

I 317 ·I 

(a) (b) 

Fig. 9. Design section model profiles (scale 1:70, dimension in mm) of t he 1987 (a) 
cross-section (Avant Projet) and of the 1989 (b) cross-section (Projet Detaille} for 
the Normandy Bridge. 

Hence, imposing a forced harmonic motion in vertical or angular degree 
of freedom and extracting the amplitude CLo, CMo and the phase shift of the 
induced dimensionless lift and moment at the same frequency of the imposed 
motion, the aerodynamic derivatives may be evaluated from the Eqs. (47-48). 

The proposed numerical model has been successfully validated by com
parison with available data concerning some simple cross-section shapes ( cir
cular, square, rectangular , etc.) and good agreement with the steady and 
non-steady experimental wind tunnel test results has also been found for the 
Great Belt East and West Bridge cross-section models, as reported in [14,15]. 

5 Numerical results 

Numerical simulations are carried out for the design profiles of the 1987 
(Avant-Projet) and 1989 (Projet Detaille) cross-section models of the Nor
mandy Bridge (Fig. 9). 

Scope of these simulations is the assessment of the steady and non-steady 
unit wind forces acting on the bridge. All simulations are run for a dimen
sionless time interval 0 < tUol B < 35. Moreover, input models reproduce 
the large scale geometry of the cross-section models but finer details (railings 
and median dividers) are omitted. 

5.1 Simulation of steady aerodynamic forces 

With reference to the 1989 design cross-section model of the Normandy 
Bridge a mesh with about 27000 cells and 36000 nodes has been used and, 
close r w' with a ratio ox I B ~ 1.9 X 10- 2 ' being Ox the characteristic mesh 
dimension. 

The Fig. 10 depicts the comparison between the experimental wind tunnel 
test results measured by the ONERA and the CEBTP on the 1989 profile 
[18] and the numerical ones for the dimensionless static coefficients defined in 
the Eqs. (1) and referred to the profile axes reference. Their variability with 
the angle of incidence is numerically proved varying () from - 6 to 6 degrees. 
The Reynolds number for the calculations is set to R e = pU0 B I 11 = 1.5 x 105 , 
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Fig. 10. Comparison of the steady aerodynamic coefficients (profile-axes referred) 
measured by the ONERA and the CEBTP and the numerical ones for the 1989 
Normandy Bridge design cross-section model (Projet Detaille'). 

whereas the inflow turbulence intensity is assumed close to 5%. Comparison 
with the 1989 ONERA results reveals to be very satisfactory for the lift 
and moment coefficients, but the drag coefficient appears greater than in 
ONERA tests, as confirmed by the CEBTP results obtained in turbulent 
wind [18]. Furthermore, numerically obtained Mach number distributions are 
represented in Fig. 11 at the dimensionless time tU0 / B = 25 for several values 
of e. 

Finally, it can be observed that the cause of the little discrepancies be
tween the computed and measured values, especially in the e negative cases, 
can be considered as a consequence of the absence in the computed model 
of finer details, i.e. railings and safety barriers. Consequently, with negative 
e, the computed flow is more attached to the upper surface than the experi
mental one in wind tunnel tests. 

5.2 Simulation of non-steady aeroelastic forces 

The non-steady aeroelastic forces can be evaluated through the Eqs. (2-4) by 
employing the flutter derivatives. With reference to the aerodynamic deriva
tives extraction procedure explained above, several cross-section forced mo
tion simulations are carried out for the 1987 Normandy Bridge design profile. 
The simulations involves separate oscillatory vertical and rotational motion 
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Fig. 11. Mach number distributions for the 1989 Normandy Bridge design cross
section model ( Projet Detaille) with e = 6°' 0°' -6° respectively ( Re = 1.5 X 105 ' 

tUo/ B = 25). 

about the mid-chord for 5 reduced wind speeds in the interval 2 < Ual f B < 
10, where f = w 121r. Vertical amplitudes for the prescribed sinusoidal motion 
are set to vI B = 0.04 and e = 4 ° for rotation about mid-chord. The used mesh 
has about 34000 cells and 45000 nodes and close r w a ratio ox I B ~ 1.6 x 10-2 . 

In order to characterize the aerodynamic derivatives as functions of the 
static torsional rotation, three different values of the mean angle of incidence 
are considered in the computation. As shown in Fig. 12, the flutter derivatives 
numerically obtained are in good agreement with the correspondent wind 
tunnel test results and they present an high variability also under small steady 
torsional rotation. Moreover, tendency to a one degree-of-freedom vertical and 
torsional flutter appears evident for eo greater than zero. 

It is worth to observe that the experimental data, obtained by the ONERA 
and given in [18], have been transformed to generate the curves of Fig. 12 
which are compatible with the expressions (2-4) . 

The little discrepancies noted between simulated and measured values 
can be resolved by two plausible causes. Simulated derivatives are obtained 
directly from the non-steady forces originated for harmonic single degree-of
freedom motions. On the other hand, the wind tunnel test results are gener
ally obtained imposing to the section model a complex movement, combining 
flexion and torsion and combining different frequencies. Another important 
aspect is a possible non-linear effect of motion amplitudes, whose experimen
tal test values are not available. 

6 Concluding remarks 

In this paper the generalization of some classical models in order to check 
the aeroelastic stability to divergence and flutter phenomena for long-span 
bridges, with particular reference to the cable-stayed scheme, has been pre
sented. This latter scheme is analyzed through a continuous approach based 
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Fig. 12. Flutter derivatives for the 1987 Normandy Bridge design cross-section 
model (Avant Projet) . 
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on the 'truss assumption', able to characterize the global dynamic response 
of the structure. 

Furthermore, under the simplified assumption of a two-dimensional wind 
flow across the girder, a numerical model able to evaluate the steady and 
non-steady wind loads acting on the bridge has been presented. The model, 
already validated by employing both simple cross-section shapes and the 
Great Belt East and West Bridge cross-sections, is based on a finite volume 
A.L.E. formulation. 

Numerical results are presented for the Normandy Bridge design cross
section models. A very good agreement appears between numerical results 
and experimental tests, confirming that the proposed numerical model may 
represent an useful tool in the analysis and design of long-span bridges. 
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Abstract. Predictive theories of instantaneous collisions involving rigid and de
formable solids as well as fluids are described. They are based on the description of 
interior percussions to the system made of the colliding bodies. The system made 
of all the elements (solids or fluids) that are colliding is a deformable system: its 
form changes even if it is made of rigid elements! If the duration of a collision is 
small compared to the duration of the evolution, we assume that the collision is 
instantaneous; thus the velocities are discontinuous We describe the collision of a 
point with a fixed plane and the simultaneous collisions of a collection of rigid bod
ies. The impact of an hammer with a bar is an example of collisions of deformables 
bodies. Experiments show the adequation of the theory. The collision of fluids and 
solids is illustrated by the description of the belly flop of a diver in a swimming 
pool. 

1 Collisions of solids 

1.1 Collision of a rigid body with a plane 

Collision of a point with a plane Let us consider a point, moving above 
a rigid fixed plane. Its position at time t is x(t). The system made of the 
point and the plane is deformable because the distance of the point to the 
plane changes. The deformation velocity of the system point-plane is the 
velocity of the point with respect to the plane, U(t) = dx(t)jdt. In many 
circumstances the duration of the collisions of the point and of the plane 
is small compared to the duration of the motion: thus we consider that the 
collisions are instantaneous. There is the velocity u- ( t) before a collision at 
time t, and the velocity u+ ( t) after the collision. A virtual velocity v ( T) is 
a bounded variation function. 

We specify the interior forces of the system point-plane by defining their 
virtual work. The virtual work of the interior forces is a linear function of 
the velocity of deformation which has to be zero for any rigid system motion. 
In our situation, because one element of the system (the plane) is fixed, the 
rigid system motions, i.e., the motions which do not change the form of the 
system, are reduced to the motion with zero velocity. 

Consider the actual motion shown on figure 1 and a virtual velocity which 
is discontinuous at time t. The virtual work of the interior forces we choose 
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is 

where Rint ( T) is the contact force between the point and the plane. Both 
quantities, pint-(t) and pint+(t) are percussions. 

The virtual work of the acceleration forces is 

wacc(tl, t2, V) = jt2 m dU(T) ·V(T)dT+m(u+ (t)-u- (t))· v- (t) + v+(t) 0 

t, dT 2 

Let us note that the virtual work of the acceleration forces is such that the 
actual work is the variation of the kinetic energy between times t 1 and t 2 . We 
suppose that there are no exterior forces applied to the system. The equations 
of motion result from the principle of virtual work 

Vi], Vt2, VV, wacc(t1, t2, V) = Wint(t1, t2, V) 

They are 

almost everywhere; and 

0 = pint-(t) _ pint+(t), 

m(U+(t)- u-(t)) = _pint(t), 

where pint is defined by 2Pint(t) =pint- (t) =pint+ (t) at any timet (figure 
1). The power of the interior forces becomes 

wint(tl, t2, V) = -jt2 Rint(T).V(T)dT- pint(t) 0 v-(t); v+(t) 0 

t, 
(1) 

Remark 1. A more sophisticated theory involving the two percussions pint- ( t) 
and pint-J.-(t) is investigated in [10]. 

From now on we consider only the collisions and do not investigate the 
smooth motion. 

The rigid body is not a point A solid with mass m, center of mass G, 
mass moment of inertia I, collides the plane at a unique point A. The velocity 
of G is U, and the rotation velocity of the solid is n. The equations of motion 
at the time of collision result from the principle of virtual work 

+ v+ + v- + w+ + w-VV,Vw, m(U - u-) · 2 +I(Jl - n-) · 2 

=_pint. (D(V+,w+,A) + D(V-,w-,A)) 
2 

D(V,w,A) = V +w x GA. (2) 
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i (t ) 

Fig. 1. A point with position x(T) moves above a plane. It collides with the plane 
at time t. An interior percussion p int (t) results at time t, and an interior force 
Rint(T) when the point slides on the plane. 

n 
c 

Fig. 2. Constitutive law describing collisions with adhesion. 

where D(V,w, A) is the velocity of deformation of the system at point A, 
i.e. the relative velocity of the point with respect to the plane. They are 

m(u+- u-) =_pint, 

I(n+ - n - ) = - GA X pint . 

The situation where the contact occurs at points, lines or surfaces is investi
gated in [10]. 

Remark 2. A consequence of the chosen work of the interior forces in (2) is 
that the interior percussion p int is applied at the collision point A . 

Constitutive laws The interior percussion p int is split between a dissipa
tive percussion pd which modelises all the dissipative interactions between 
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the colliding solids and a reaction to the impenetrability condition preac. The 
expression of the work of the interior force in (1) and (2) leads to assume 
that pd depends on the velocity of deformation. Thus 

pint = pd( D(U+, n+, A) + D(U-, n-, A))+ preac. 

2 
(3) 

We assume that the dissipative percussion results from a pseudo-potential of 
dissipation ¢d 

where 8¢d is the subdifferential set (see the appendix). Let us recall that 
a pseudo-potential of dissipation, as introduced by J.J. Moreau, is a convex 
function which is positive with value zero at the origin. The impenetrability 
reaction is active only when the risk of interpenetration is present, i.e. when 
the contact is persistent after the collision. Thus 

preac E [)J+(D(U+, n+,A) · N)N. (4) 

where oh is the subdifferential set of the indicator function I+ of the positive 
numbers (see the appendix). The normal vector N is directed upward (figure 
1). Let us define the set 

{I D(u-,n-,A)·N} 
K=xx2: 2 . 

Then relation ( 4) is equivalent to 

preac 81 ( D(U+, n+, A)+ D(U-, n-, A) . N)N 
E K 2 , 

where IK is the indicator function of the set K (see the appendix). Thus by 
defining the functions of D 

lK(D) = h(D · N) 

and 

the constitutive law (3) becomes 

pint E 8¢( D(u+, n+, A)+ D(u-, n-, A)). 
2 

(5) 

Let us note that the pseudo-potential ¢ d~pends on the velocity of deforma
tion before the collision via the function IK. 
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Examples of constitutive laws depending on a pseudo-potential. Let us con
sider the point and plane described in paragraph 1.1.1. The normal velocity 
of the point before the collision u- · N and after the collision u+ · N are 
denoted UJV- and Uj; . For the sake of simplicity, we only investigate the nor
mal part of the percussion and we assume that the tangential percussions are 
zero. 

A very simple pseudo-potential is a quadratic function <!>(D) = kN(D · 
N) 2 , which corresponds to a linear dissipative percussion which is for the 
point pd = {kN(Uj; + UJV-)/2} N. In the example of paragraph 1.1.1 involv
ing the system point-plane, one can easily show [7] that the linear percussion 
leads to a normal restitution coefficient e = (kN- m)/(kN + m) if kN > m 
and e = 0 if kN :::; m. 

Collisions involving adhesion are collisions such as the interior or exte
rior percussion has to be large enough for separation to occur after. The 
constitutive law shown in the graph of figure 2 has this property. The two 
parameters C and II characterise the properties of adhesion. In the example 
of the system point-plane: 

• if the relative normal velocity of the point before the collision is small 
(JUJV-J:::; CkN/(kN- m)) the adhesion forces are strong enough for the 
point to remain in contact after a collision (kN is the slope of the linear 
parts of the law assumed greater than m (otherwise contact of the point 
is always persistent after a collision)); 

• if the point is in contact with the plane, an exterior percussion has to be 
larger than II to separate them [7]. 

A constitutive law which does not result from a pseudo-potential: the Coulomb 
law. Experiments of collisions in two dimensions of dry rigid solids with a 
fixed plane (dry angular steel particles colliding at the point A a dry marble 
plane, whose outward normal unit vector is N) (figures 3 and 4) show that 
the normal behaviour can be modelised by a pseudo-potential, even quite well 
by a quadratic one (figure 3): P'J = pd · N E a<I>N (UJV-(A) + Uj;(A)),where 
UN (A) is the normal component of the velocity of the point A belonging to 
the solid. But as far as the tangential behaviour is concerned, P~ = pd · T 
(T is the tangent vector in the plane of experiments) can not be considered 
as a function of the only variable Vr (A) + Uj (A): it depends also on P'J 
(figure 4). 

Remark 3. In our experiments, the colliding solids do not maintain contact 
after the collision so preac is always zero. 

This behaviour is well described by 

[[Prll :::; fL [PN[ with fL > 0 and 

if [[Prll < fL [PN[ then Dr= 0, 

if IIPrll = fL lPN I then 
3>. > 0 such as D(U+, n+, A)r + D(U-, n-, A)r = ->.Pr, (6) 
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Fig. 3. The normal percussion PK, versus the normal part of t he velocity of de
formation, U~(A) + U;y(A), for collisions of dry steel particles with a dry marble 
plane. 
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Fig. 4. The quotient - ( P:j:. / PK,) versus the tangential part of the velocity of de
formation, U:f(A) + Ui (A) , for collisions of dry steel particles with a dry marble 
plane. 
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noting D(U, !1, A)r = D(U, !1, A)-(D(U, !1, A). N)·N and Pr =pint_ 
pint. N. 

This constitutive law, called the Coulomb law, does not derive from a 
pseudo-potential. 

1.2 Simultaneous collision of a collection of rigid bodies 

Consider N solids with mass mi, center of mass Gi mass moment of inertia 
tensor h colliding together at time t. The velocity of the center of mass of 
solidi is Ui and its rotation velocity is !Ji. We assumed that all the contacts 
are reduced to points. Multiple collisions can occur between solids i and j 
at points Ai,j,k. The set Si,j contains the points of contact of the two solids. 
If the two solids do not collide, this set is empty. The percussion Pl':/k is 
applied at the collision point Ai,j,k· Let the virtual velocities of the centers 
of mass Gi be Vi and the virtual rotation velocity be wi. Let us define the 
vectors V = (Vi,wi), (; = (Ui, !Ji) and the function 

which gives the velocity of deformation at point Ai,j,k (the relative velocity 
of the point). The principle of virtual work may be written 

N-1 N 

+ L L L Pl:J\. { Di,j(V, Ai,j,k) 
i=l j=i+l Ai,J,kESi,J 

(7) 

By using the constitutive laws (5) 
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which take into account the impenetrability condition, the principle (7) be
comes 

, ~ { + u+ + u-: 
lfV, ~ mi(Ui - Uj) ·(Vi- ' 2 ' ) 

+ n+ + n-: } +Ii(ni - n;) · (wi- ' 2 ' ) 

N-1 N 

+2::: 2::: { <I> · k(D ·(V A k)) t,J, l,J ' 1-,J, 

i=l j=i+l Ai,1 ,kESi,J 

(8) 

In order to use law ( 5), we assume that there exist a normal vector directed 
from solid j toward solidi with i < j. 

Remark 4. The more general situation where irregular solids collide at angu
lar vertices is studied in [4], [10] and [9]. 

The function 

v---+ cfli,j,k(Di,j(V, Ai,j,k)) = cfli,j,k(Vi + Wi X GiAi,j,k- (Vj + Wj X GjAi,j,k))' 

is convex, thus the function 

i=l j=i+l Ai,J,kESi,J 

is a pseudo-potential. Let us define the scalar product 

N 

(0, v) = L {miUi. vi+ Iini. wi}. 
i=l 

Thus relation ( 8) is 

( o+ - o-, v - O+ ; o- ) + <P(v) - <P( o+ ; o- ) ~ o, 

or by having R6 N equipped with the scalar product (., .) 

or by letting 

0+ + o-
X=---

2 

-(0+- O-) E acfl(O+; o- ), 

20- E 2X +a<!>( X). (9) 
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The equation (9), assuming (;- is known, has one and only one solution 
because the operator X --t 2X + 8if>(X) is maximal, surjective and strictly 
monotone. It is classical that the equation (9) is equivalent to the minimiza
tion problem 

The interior percussions are described by the Coulomb law. If we set in 
Coulomb law the normal percussion PN at its actual value, X, the consti
tutive law results from a pseudo-potential of dissipation. Thus to find X is 
equivalent to solve the equation 

X= Arglnf { ~Y2 + <I>(PN(X), Y)- ( 2(;-, Y) IY E R6N}, 

where the vector PN(X) contains the actual (but unknown!) values of the 
quantities ji,PN which intervene in the tangential constitutive law (6). One 
can try to solve this problem by an iterative method 

{ 1 2 A I A ) I 6N } Xn+l = Arglnf 2y + if>(PN(Xn), Y)- \ 2U-, Y Y E R . 

It can be shown that the method converges if the coefficients J1i,j,k of the 
laws (6) are not too large [7] . 

1.3 Collision of a deformable solid and a rigid body 

Instantaneous collisions of deformable solids When it is no more pos
sible to consider that the colliding bodies are rigid (for example, when they 
vibrate after the collision), we keep the assumption that the collision is in
stantaneous: each deformable solid has a velocity field u- (x, t) before the 
collision and a velocity field u+(x, t) after the collision. For the sake of sim
plicity let us investigate one deformable solid with density p, which occupies 
a time t the domain D(t), with boundary 8D(t). This solid collides a fixed 
plane at time t (figure 5). The contact surface is F1 ( t). An exterior percussion 
is applied to the solid on r2(t) c an(t) (rl(t) and r2(t) are not reduced to 
a point). 

As already said, we focus only on collisions. 

Equations of motion. During the short duration of the collision, kinematic 
incompatibilities produce very large stresses in the solid and very large sur
face forces on the contact surface with the fixed plane. This assumption of 
instantaneity of the collision leads us to represent these forces by forces con
centrated in a very short period of time, i.e., percussion stresses and contact 



www.manaraa.com

392 E. Dimnet,M. Fn\mond, R. Gormaz, J. San Martin 

Fig. 5. Instantaneous collision of the deformable solid n with a rigid and fixed 
plane at time t. 

l'ooitioos oflh• r:.~~) P<Joidons oflhe 
bmlmer blow.s. LJ dsplaeemenl~msors. 

Fig. 6. A fixed bar, with length L, is blown by a hammer at one of the points lA, 
2A, 2B, 3A, 3B, 4A, or 4B and vibrates. For each collision, the displacements of 
the vibrating bar are recorded at points cl,c2, c3 every w-3s during 10 s. 

percussions. Thus we choose the work of the interior forces at time t of colli
sion 

wint(V) =- { Eint(x, t): D(V(x))dD- { p int (x, t) · V (x )dT, 
Jn(t) lr, (t ) 

where D(V) = ( (v; j + Vi ,i ) / 2) is the usual strain rate. The brief but very 
large forces which appear in t he collision are represented, as a lready said, 
by percussions: the percussion stresses Eint(x , t) and the surface percussions 
p int(x, t) on the contact surface T1 (t). The virtual work of the acceleration 
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forces is 

wacc(V) = 1 p [U(x, t)]· V(x)d.!?, 
fl(t) 

where [U(x, t)] is the actual discontinuity of velocity. The virtual work of the 
exterior forces is 

wext(V) = { pext(x, t). V(x)d.!?. 
J r2(t) 

The equations of motion at the collision time result from the principle of 
virtual work 

p [U] (x, t) = divEint(x, t), in .!?(t), 

Eint(x, t)N = _pint(x, t) in F1 (t), 

Eint(x, t)N = pext(x, t) in F2(t), 

Eint(x, t)N = 0 in o.!?(t)\ (F1(t) U F2(t)), 

where N is the outward normal vector. The constitutive laws can be define by 
pseudo-potentials of dissipation which involve the impenetrability condition 
as explained above 

Eint = o<P pint _ 8<I>rl 
a(n(u+ + u-))' - a(u+ + u-) · 

Examples of contact percussion with Coulomb law are given in [7]. The most 

simple pseudo-potential one can use is quadratic<!>= (kv/2) (D(U+ + u-))2, 
kv > 0. We show in the next section that this simple pseudo-potential is 
sufficient to describe the impact of a hammer on a deformable bar. Moreover 
it is possible to identify kv by experiments. 

Experimental identification of the parameter kv of the constitutive 
law Let us investigate the collision of a hammer with an elastic deformable 
bar (p = 7800 kg.m- 3 , E = 210 GPa, v = 0.3,.!? = 4 x 40 x 1870 mm). The 
bar is fixed at both ends. The blow of the hammer is an exterior percussion 
pext applied to the bar on the contact surface F2 (the experiments are noted 
1A, 2A, 2B, 3A, 3B , 4A and 4B, following the place where the hammer hits 
the bar (figure 6)). 

The quadratic pseudo-potential gives a linear constitutive law 

(10) 

As the bar is at rest before the collision, the velocity u+ ( x) of the bar after 
the impact satisfies 

kvgrad(divU+) + kvL1U+ - pU+ = 0 in.!?, 

Eint N = 0 in 8.!?\ (To U F2 ), 

Eint N = pext (X) in r2' 

u+ = 0 in ro. (11) 
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The field u+ (X) which satisfies this system depends only on kv for a given 
pext. To identify kv we need information on the velocity after the collision, 
u+ (X). Rather than trying to measure it directly, we perform a spectral 
decomposition of the vibration after the collision and measure the projections 
of the field u+ (X) on the orthogonal eigendisplacements of the bar. Therefore, 
after the collision, the displacements d of three different points, C 1 , C 2, C 3 

are recorded every 10-3 s. 
The collision occurs at time t = 0. The assumptions that the collision is 

instantaneous and that the displacements are continuous functions of time 
after, imply that the displacement d(y, t) of any point y of the bar is given 
by 

where (ds(z),ws) is the sth eigenmode of the bar. 
On the one side, a spectral analysis of the measured signals d( C i, t) allows 

us to get the first three a:s =In ds(z). u+(z)dn which are the projection of 
U(z) on the sth eigendisplacement of the bar (the measured eigenfrequencies 
are 2.8, 10.5 and 23.4 Hz). On the other side, the numerical solution to the 
system (11) is computed for different values of kv and projected on the three 
first eigendisplacement of the bar, which are also computed, the values of 
these projections being called f3s (the numerical computations are performed 
with the program CESAR-LCPC) [13]. The table 1 shows a good agreement 
between the a:'s and the (3's for kv = 1, 2 107 N s2m-2 . The agreement of the 
0: 8 with the f3s means that the model and the very simple constitutive law 
(10) give, at least in this situation, a satisfying description of the collision of 
the hammer with the bar. 

2 Collision of solids and fluids 

Consider a swimmer diving in a swimming pool. When impacting the water 
the diver can be horizontal and do a belly flop. In this situation a violent 
collision occurs with the water. Consider a fiat boat in a rough sea: the fiat 
bottom of the ship collides violently with the water. When a solid collides 
with water very large internal forces appear because of the incompatibility 
of the velocities of the solid and water: very large stresses inside and very 
large forces on the contact surface. In many circumstances the duration of 
the violent contact is very short compared to the duration of the evolution: 
for instance when skipping stones on the still water of a lake, the duration of 
the contact of the stone with the water is small compare to its time flight. We 
decide as a schematisation to consider that the collisions are instantaneous. 
Thus the velocities are discontinuous functions of the time: for the fluid, 
there is the velocity u-(x,t) before a collision at timet and the velocity 
u+(x, t) after the collision; for the solid, there is the velocity U;(x, t) = 
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x- (t) + n- (t) X (x- xc(t)) before the collision and the velocity Ut (x, t) = 
x+(t) + n+(t) x (x- xc(t)) after the collision. The velocity of the center 
of mass xc(t) of the rigid body is X(t) and ll(t) is its rotation velocity. 
Because the collision is instantaneous, the very large internal forces are also 
concentrated in time: thus they become percussions. 

Collision Position 

"'' I a, I a, /J, ~' /J, 
of measure 

1A Cl 1.27 NA 135 1.27 1.84 1.25 
C2 1.28 1.82 125 
C3 1.25 1.54 132 

2A Cl 3.33 NA 1.49 3.32 3.69 1.33 
C2 3.36 3.79 2.07 
C3 3.27 3.32 1.43 

2B Cl 6.37 NA 2.96 6.35 7.05 2.54 
C2 6.43 7.77 2.76 
C3 6.26 6.83 2.30 

3A Cl 7.95 NA 1.53 7.94 4.68 1.41 
C2 8.04 5.52 133 
C3 7.82 4.43 1.60 

3B Cl 8.82 NA 1.66 8.92 5.26 1.59 
C2 8.91 5.24 1.46 
C3 8.67 4.88 175 

4A Cl 8.18 NA 3.40 8.17 0.74 3.27 
C2 8.28 0 00 3.13 
C3 8 04 0.00 3.41 

4B Cl 8.91 NA 4 01 8.90 0.80 3.56 
C2 9 02 000 3.64 
C3 8.76 000 4 03 

Table 1. The recorded projections a1, a2 and aa and the corresponding computed 
projections /31, /32 and (33 with kv = 1, 2 107 N s 2m - 2 . When the eigendisplacement 
is zero at a given point, the corresponding a cannot be measured by analysing the 
vibration of this point: it is NA (not avaible). 

Let consider the system made of the fluid and moving solids. For instance 
the container of the fluid and a moving obstacle (figure 7). For the sake of 
simplicity, we suppose there is only one solid (for instance the container). The 
fluid occupies the domain D(t) and is in contact with the solid on the part 
T1 (t) of its boundary &D(t). Any time t, we consider the virtual velocities 
(V(x), Y,w) defined on D(t). The mass of the rigid body isM and its mass 
moment of inertia is I. The density of the fluid is p. 

2.1 The equations of motion 

They result from the principle of virtual work, where the virtual work of the 
acceleration forces is, 

wacc(v, Y, w) = L p [U(x, t)]· V(x)dD + M [X(t)]· y +I [ll(t)]· w, 
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The virtual work of the interior forces we choose, is a linear function of the 
virtual strain rate, D(V) = (1/2)(Vi,J + Vj,;), and of the difference of the 
velocities on the contact surface, V - V s. The percussion stress Eint ( x, t) 
and the interaction percussion pint(x, t) are generalized interior forces which 
appear when collisions occur. They are, as already said, usual interior forces 
concentrated in a very short period of time. The virtual work of the interior 
forces we choose, is 

Wint(V, Y, 7r) = -l Eint(x, t): D(V)df? 

- f pint(x, t). (V(x)- Vs(x)) dr 
lrl 

The equations of motion are 

p [U(x, t)] = divEint(x, t) for x E f?(t), 

Eint(x, t)N = _pint(x, t) for X E rl (t), 

Eint(x, t)N = 0 for x E 8f?(t)\T1 (t), 

M[X(t)] = { pint(x, t)dT, 
J r!(t) 

I[ll(t)] = r (x- xc(t)) X pint(x, t)dr. 
J rJ(t) 

Constitutive laws are needed for ( Eint, pint). 

2.2 The constitutive laws 

The expression of Wint suggests to assume Eint to depend on D(U+ + u-). 
We choose the simple constitutive law: 

The incompressibility condition div(U+ + u-) = 0 or divU+ = 0 because 
divu- = 0, results in the percussion pressure p. The interaction percussion 
pint between the solid and the fluid has to take into account their impene
trability. Thus the percussion is split between a reaction preac to the impen
etrability constraint and a dissipative percussion pd which modelises all the 
dissipative interactions between the fluid and the solid, 

pint = pd + preac. 

The expression of Wint suggests to assume pd to depend on (U+ - u; + 
u- - U;). Thus we choose again a simple constitutive law 

pd(x, t) = K(U+(x, t)- Ut(x, t) + u-(x, t)- u;(x, t)), with K > 0. 
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Of course the physical parameter K depends on the nature of the solid and 
fluid colliding. The impenetrability reaction is active only when the risk of in
terpenetration is present, i.e. when the contact is persistent after the collision. 
Thus 

preac E 8L(U+(x, t)- Ut(x, t) · N)N, (12) 

where 8L is the sub-differential set of the indicator function L of the set of 
the negative numbers R- (see the appendix). 

2.3 The diver problem 

For the sake of simplicity a 2D problem is investigated. It is assumed the 
swimming pool to be a fixed rectangle. The horizontal swimmer T1 dives at 
the middle of the swimming pool (figure 7) . It is assumed the thickness of the 
diver is zero. Its velocities when hitting the water are, x - = (0, x-) , n- = 
0. 

lm ~x- 4 
lm 

~ 
r:~ rl 

12m n 
ro 

= 
3m 

Fig. 7. The diver and the swimming pool. The normal velocity of the diver before 
the collision, x-' is negative. 

The diver with mass M = 100 Kg falls vertically from a height of 1m. 
Its vertical velocity is u- = /2g = 4.47m/ s. The density of the water is 
p = 1000K g / m 3 . The parameter defining the collision constitutive laws are 

K = 1N/ m 2 , "f = 0.25Nj m. 

The equations may be solved by the classical numerical methods for vari
ational inequalities. The water splashes up on the two sides of the diver as 
shown on the figure 8. The velocity of the diver after the collision is the ve
locity of the water ( -0.75 ms-1 ), in agreement with every day experiments! 
Details are shown on figure 9: the velocity is drawn at different depth of 
the pool. The percussion pressure is shown on the figure 10. The average 
percussion stress _EintN under the diver is - 373 Nm2s - 1 and the average 
percussion pressure is 371 N m 2 s - l. 
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··· ······················································ ···· 

Fig. 8. The velocity of the water which splashes up on the two sides of the diver. 

Fig. 9. Details of the velocity of the water at different depths. 

Fig. 10. The pressure in the water. Red is a high pressure and blue a low pressure. 
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3 Appendix 

Let us consider the set RU{ +oo} where the addition and the multiplication by 
strickly positive numbers are completed by +oo + b = +oo and a( +oo) = +oo 
(a > 0). A function from Rn into RU{ +oo} is convex if and only if 

\/x,y E Rn,W E ]0, 1[,f(Bx+ (1- B)y) :S Bf(x) + (1- B)f(y). 

A convex function in not always differentiable but a generalised derivative 
may be defined: an element z ERn is a subgradient of the convex function f 
at point x if and only if 

\fy ERn, f(y) ~ f(x) + (y- x) · z, (13) 

the set of the sub-gradients is denoted 8 f ( x). The indicator function I+ of the 
set ofthe positive numbers R+ is defined by I+(x) = 0 if x ~ 0 and J+(x) = 
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+oo if x < 0. Its subdifferential set is shown in figure 11. The indicator 
function, I_, of the set of the negative numbers R- is defined in the same way. 
The indicator function h of the interval K = [(D(U-, n-, A)· N) /2, oo] 
is defined by h(x) = 0 if x E K and h(x) = +oo if x tj_ K. Their 
subdifferential sets are shown in figure 11. 

.. .. .. 
i!!. i!!. i!!. 

Fig. 11. The subdifferential set 8h of the indicator function of the set of the 
positive numbers R+: 8h(O) = R-, 8/+(x) = {0} for x > 0 and 8/+(x) = 0 for 
x < 0. The subdifferential set 8L of the indicator function L of the set of the 
negative numbers R-. The subdifferential set 81 K of the indicator function lK of 
the set K. 

The following theorem is useful for reading the constitutive laws 

Theorem 1. Let a convex function f =I +oc. If this function is subdifferen
tiable at point x, i.e. if 8 f ( x) =I 0, it is finite at this point: f ( x) < +oo. 

This theorem applies in the numerous constitutive laws: preac E 8Ik(D) 
(with k = R+, R- or K): because 8I k (D) is not empty it results that 

Ik(D) < +oc which implies Ik(D) = 0 and DE k. Thus the constitutive 
law preac E 8Ik(D) implies that the constraint on the velocity Dis satisfied. 
It gives also the value of the reaction to the constraint. 




